A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully Morphology Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/rs14143366
Terrestrial LiDAR scanning (TLS) has in preceding years emerged as one of the most accurate and reliable geospatial methods for the creation of very-high resolution (VHR) models over gullies and other complex geomorphic features. Rough terrain morphology and rapid erosion induced spatio-temporal changes (STCs) can lead to significant challenges in multi-temporal field TLS surveys. In this study, we present a newly developed systematic framework for the optimization of multi-temporal terrestrial LiDAR surveys through the implementation of thorough systematic pre-survey planning and field preparation phases. The developed systematic framework is aimed at increase of accuracy and repeatability of multi-temporal TLS surveys, where optimal TLS positions are determined based on visibility analysis. The whole process of selection of optimal TLS positions was automated with the developed TLS positioning tool (TPT), which allows the user to adjust the parameters of visibility analysis to local terrain characteristics and the specifications of available terrestrial laser scanners. Application and validation of the developed framework were carried out over the gully Santiš (1226.97 m2), located at Pag Island (Croatia). Eight optimal TLS positions were determined by the TPT tool, from which planned coverage included almost 97% of the whole gully area and 99.10% of complex gully headcut morphology. In order to validate the performance of the applied framework, multi-temporal TLS surveys were carried out over the gully Santiš in December 2019 and 2020 using the Faro Focus M70 TLS. Field multi-temporal TLS surveys have confirmed the accuracy and reliability of the developed systematic framework, where very-high coverage (>95%) was achieved. Shadowing effects within the complex overhangs in the gully headcut and deeply incised sub-channels were successfully minimalized, thus allowing accurate detection and quantification of erosion induced STCs. Detection of intensive erosion induced STCs within the observed one-year period was carried out for the chosen part of the gully headcut. Most of the detected STCs were related to the mass collapse and gradual uphill retreat of the headcut, where in total 2.42 m2 of soil has been eroded. The developed optimization framework has significantly facilitated the implementation of multi-temporal TLS surveys, raising both their accuracy and repeatability. Therefore, it has great potential for further application over gullies and other complex geomorphic features where accurate multi-temporal TLS surveys are required for monitoring and detection of different STCs.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/rs14143366
- https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196
- OA Status
- gold
- Cited By
- 10
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4285394288
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4285394288Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/rs14143366Digital Object Identifier
- Title
-
A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully MorphologyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-07-13Full publication date if available
- Authors
-
Fran Domazetović, Ante Šiljeg, Ivan Marić, Lovre PanđaList of authors in order
- Landing page
-
https://doi.org/10.3390/rs14143366Publisher landing page
- PDF URL
-
https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196Direct OA link when available
- Concepts
-
Terrain, Lidar, Remote sensing, Visibility, Geospatial analysis, Field (mathematics), Computer science, Geology, Cartography, Geography, Meteorology, Mathematics, Pure mathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
10Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 4, 2023: 4Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4285394288 |
|---|---|
| doi | https://doi.org/10.3390/rs14143366 |
| ids.doi | https://doi.org/10.3390/rs14143366 |
| ids.openalex | https://openalex.org/W4285394288 |
| fwci | 0.98284369 |
| type | article |
| title | A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully Morphology |
| awards[0].id | https://openalex.org/G6169187523 |
| awards[0].funder_id | https://openalex.org/F4320322674 |
| awards[0].display_name | |
| awards[0].funder_award_id | UIP-2017-05-2694 |
| awards[0].funder_display_name | Hrvatska Zaklada za Znanost |
| biblio.issue | 14 |
| biblio.volume | 14 |
| biblio.last_page | 3366 |
| biblio.first_page | 3366 |
| topics[0].id | https://openalex.org/T11164 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2305 |
| topics[0].subfield.display_name | Environmental Engineering |
| topics[0].display_name | Remote Sensing and LiDAR Applications |
| topics[1].id | https://openalex.org/T11211 |
| topics[1].field.id | https://openalex.org/fields/19 |
| topics[1].field.display_name | Earth and Planetary Sciences |
| topics[1].score | 0.9991000294685364 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1907 |
| topics[1].subfield.display_name | Geology |
| topics[1].display_name | 3D Surveying and Cultural Heritage |
| topics[2].id | https://openalex.org/T10889 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.996399998664856 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1111 |
| topics[2].subfield.display_name | Soil Science |
| topics[2].display_name | Soil erosion and sediment transport |
| funders[0].id | https://openalex.org/F4320322674 |
| funders[0].ror | https://ror.org/03n51vw80 |
| funders[0].display_name | Hrvatska Zaklada za Znanost |
| is_xpac | False |
| apc_list.value | 2500 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2707 |
| apc_paid.value | 2500 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2707 |
| concepts[0].id | https://openalex.org/C161840515 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7275686264038086 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q186131 |
| concepts[0].display_name | Terrain |
| concepts[1].id | https://openalex.org/C51399673 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7210138440132141 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q504027 |
| concepts[1].display_name | Lidar |
| concepts[2].id | https://openalex.org/C62649853 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6441328525543213 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[2].display_name | Remote sensing |
| concepts[3].id | https://openalex.org/C123403432 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6001492142677307 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q654068 |
| concepts[3].display_name | Visibility |
| concepts[4].id | https://openalex.org/C9770341 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5265220403671265 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1938983 |
| concepts[4].display_name | Geospatial analysis |
| concepts[5].id | https://openalex.org/C9652623 |
| concepts[5].level | 2 |
| concepts[5].score | 0.42239341139793396 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q190109 |
| concepts[5].display_name | Field (mathematics) |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.38678470253944397 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C127313418 |
| concepts[7].level | 0 |
| concepts[7].score | 0.31613874435424805 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[7].display_name | Geology |
| concepts[8].id | https://openalex.org/C58640448 |
| concepts[8].level | 1 |
| concepts[8].score | 0.25961148738861084 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[8].display_name | Cartography |
| concepts[9].id | https://openalex.org/C205649164 |
| concepts[9].level | 0 |
| concepts[9].score | 0.21722948551177979 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[9].display_name | Geography |
| concepts[10].id | https://openalex.org/C153294291 |
| concepts[10].level | 1 |
| concepts[10].score | 0.08324688673019409 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q25261 |
| concepts[10].display_name | Meteorology |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C202444582 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[12].display_name | Pure mathematics |
| keywords[0].id | https://openalex.org/keywords/terrain |
| keywords[0].score | 0.7275686264038086 |
| keywords[0].display_name | Terrain |
| keywords[1].id | https://openalex.org/keywords/lidar |
| keywords[1].score | 0.7210138440132141 |
| keywords[1].display_name | Lidar |
| keywords[2].id | https://openalex.org/keywords/remote-sensing |
| keywords[2].score | 0.6441328525543213 |
| keywords[2].display_name | Remote sensing |
| keywords[3].id | https://openalex.org/keywords/visibility |
| keywords[3].score | 0.6001492142677307 |
| keywords[3].display_name | Visibility |
| keywords[4].id | https://openalex.org/keywords/geospatial-analysis |
| keywords[4].score | 0.5265220403671265 |
| keywords[4].display_name | Geospatial analysis |
| keywords[5].id | https://openalex.org/keywords/field |
| keywords[5].score | 0.42239341139793396 |
| keywords[5].display_name | Field (mathematics) |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.38678470253944397 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/geology |
| keywords[7].score | 0.31613874435424805 |
| keywords[7].display_name | Geology |
| keywords[8].id | https://openalex.org/keywords/cartography |
| keywords[8].score | 0.25961148738861084 |
| keywords[8].display_name | Cartography |
| keywords[9].id | https://openalex.org/keywords/geography |
| keywords[9].score | 0.21722948551177979 |
| keywords[9].display_name | Geography |
| keywords[10].id | https://openalex.org/keywords/meteorology |
| keywords[10].score | 0.08324688673019409 |
| keywords[10].display_name | Meteorology |
| language | en |
| locations[0].id | doi:10.3390/rs14143366 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S43295729 |
| locations[0].source.issn | 2072-4292 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2072-4292 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.3390/rs14143366 |
| locations[1].id | pmh:oai:doaj.org/article:652e6f385741456db322fb4cdc894a89 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Remote Sensing, Vol 14, Iss 14, p 3366 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/652e6f385741456db322fb4cdc894a89 |
| locations[2].id | pmh:oai:mdpi.com:/2072-4292/14/14/3366/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Remote Sensing; Volume 14; Issue 14; Pages: 3366 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/rs14143366 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5035389832 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2395-0132 |
| authorships[0].author.display_name | Fran Domazetović |
| authorships[0].countries | HR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I56033108 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[0].institutions[0].id | https://openalex.org/I56033108 |
| authorships[0].institutions[0].ror | https://ror.org/00t89vb53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I56033108 |
| authorships[0].institutions[0].country_code | HR |
| authorships[0].institutions[0].display_name | University of Zadar |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Fran Domazetović |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[1].author.id | https://openalex.org/A5063930517 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6332-174X |
| authorships[1].author.display_name | Ante Šiljeg |
| authorships[1].countries | HR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I56033108 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[1].institutions[0].id | https://openalex.org/I56033108 |
| authorships[1].institutions[0].ror | https://ror.org/00t89vb53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I56033108 |
| authorships[1].institutions[0].country_code | HR |
| authorships[1].institutions[0].display_name | University of Zadar |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ante Šiljeg |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[2].author.id | https://openalex.org/A5022455321 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9723-6778 |
| authorships[2].author.display_name | Ivan Marić |
| authorships[2].countries | HR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I56033108 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[2].institutions[0].id | https://openalex.org/I56033108 |
| authorships[2].institutions[0].ror | https://ror.org/00t89vb53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I56033108 |
| authorships[2].institutions[0].country_code | HR |
| authorships[2].institutions[0].display_name | University of Zadar |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ivan Marić |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[3].author.id | https://openalex.org/A5058455463 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4549-4481 |
| authorships[3].author.display_name | Lovre Panđa |
| authorships[3].countries | HR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I56033108 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| authorships[3].institutions[0].id | https://openalex.org/I56033108 |
| authorships[3].institutions[0].ror | https://ror.org/00t89vb53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I56033108 |
| authorships[3].institutions[0].country_code | HR |
| authorships[3].institutions[0].display_name | University of Zadar |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Lovre Panđa |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Geography, University of Zadar, 23000 Zadar, Croatia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2022-07-14T00:00:00 |
| display_name | A New Systematic Framework for Optimization of Multi-Temporal Terrestrial LiDAR Surveys over Complex Gully Morphology |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11164 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2305 |
| primary_topic.subfield.display_name | Environmental Engineering |
| primary_topic.display_name | Remote Sensing and LiDAR Applications |
| related_works | https://openalex.org/W4319317934, https://openalex.org/W2901265155, https://openalex.org/W2956374172, https://openalex.org/W4319837668, https://openalex.org/W2362400270, https://openalex.org/W2351984678, https://openalex.org/W2140032575, https://openalex.org/W2011860471, https://openalex.org/W2012196540, https://openalex.org/W3011451421 |
| cited_by_count | 10 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 4 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| locations_count | 3 |
| best_oa_location.id | doi:10.3390/rs14143366 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S43295729 |
| best_oa_location.source.issn | 2072-4292 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2072-4292 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.3390/rs14143366 |
| primary_location.id | doi:10.3390/rs14143366 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S43295729 |
| primary_location.source.issn | 2072-4292 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2072-4292 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2072-4292/14/14/3366/pdf?version=1657703196 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.3390/rs14143366 |
| publication_date | 2022-07-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2463432670, https://openalex.org/W2607056896, https://openalex.org/W2961826910, https://openalex.org/W3116079528, https://openalex.org/W4210520316, https://openalex.org/W2281280694, https://openalex.org/W3158427608, https://openalex.org/W3198609909, https://openalex.org/W2581750114, https://openalex.org/W3204184986, https://openalex.org/W2586629890, https://openalex.org/W3035109286, https://openalex.org/W2462160016, https://openalex.org/W2795952199, https://openalex.org/W3113436814, https://openalex.org/W2800605073, https://openalex.org/W3110700469, https://openalex.org/W4212851094, https://openalex.org/W2073389912, https://openalex.org/W2521638908, https://openalex.org/W2763162241, https://openalex.org/W6679396457, https://openalex.org/W2060403633, https://openalex.org/W3109659126, https://openalex.org/W4221093743, https://openalex.org/W1982372327, https://openalex.org/W2122679748, https://openalex.org/W2293160657, https://openalex.org/W2571906306, https://openalex.org/W2062264972, https://openalex.org/W2761683540, https://openalex.org/W2060091566, https://openalex.org/W3187315462, https://openalex.org/W2883495877, https://openalex.org/W3018966866, https://openalex.org/W2325426851, https://openalex.org/W1977412936, https://openalex.org/W2015637344, https://openalex.org/W3168258205, https://openalex.org/W3097873303, https://openalex.org/W3026602768, https://openalex.org/W3123422395, https://openalex.org/W2980019625, https://openalex.org/W2065625051, https://openalex.org/W4301915078, https://openalex.org/W2554763618, https://openalex.org/W2598533724, https://openalex.org/W3103255592, https://openalex.org/W4221065285, https://openalex.org/W3116673815, https://openalex.org/W3173277851, https://openalex.org/W4200347979, https://openalex.org/W1975809100, https://openalex.org/W2103835996, https://openalex.org/W2043499216, https://openalex.org/W3018416350, https://openalex.org/W2137151237, https://openalex.org/W2890418895, https://openalex.org/W2581605908, https://openalex.org/W6724625946, https://openalex.org/W4225676784, https://openalex.org/W2087741510, https://openalex.org/W2251365809, https://openalex.org/W2485193819, https://openalex.org/W2007356792, https://openalex.org/W2116906800, https://openalex.org/W3215441022, https://openalex.org/W2170574012, https://openalex.org/W2071246728, https://openalex.org/W2135195578 |
| referenced_works_count | 70 |
| abstract_inverted_index.a | 59 |
| abstract_inverted_index.In | 54, 201 |
| abstract_inverted_index.as | 9 |
| abstract_inverted_index.at | 90, 168 |
| abstract_inverted_index.by | 178 |
| abstract_inverted_index.in | 5, 49, 221, 259, 321 |
| abstract_inverted_index.is | 88 |
| abstract_inverted_index.it | 350 |
| abstract_inverted_index.m2 | 324 |
| abstract_inverted_index.of | 11, 22, 67, 75, 92, 96, 113, 115, 136, 146, 154, 189, 196, 207, 242, 276, 281, 298, 303, 317, 325, 339, 375 |
| abstract_inverted_index.on | 107 |
| abstract_inverted_index.to | 46, 132, 139, 203, 309 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.97% | 188 |
| abstract_inverted_index.M70 | 230 |
| abstract_inverted_index.Pag | 169 |
| abstract_inverted_index.TLS | 52, 98, 102, 117, 124, 174, 212, 234, 341, 367 |
| abstract_inverted_index.TPT | 180 |
| abstract_inverted_index.The | 84, 110, 330 |
| abstract_inverted_index.and | 15, 29, 37, 80, 94, 143, 152, 194, 224, 240, 263, 274, 313, 347, 359, 373 |
| abstract_inverted_index.are | 104, 369 |
| abstract_inverted_index.can | 44 |
| abstract_inverted_index.for | 19, 64, 294, 354, 371 |
| abstract_inverted_index.has | 4, 327, 334, 351 |
| abstract_inverted_index.one | 10 |
| abstract_inverted_index.out | 160, 216, 293 |
| abstract_inverted_index.the | 12, 20, 65, 73, 122, 130, 134, 144, 155, 162, 179, 190, 205, 208, 218, 227, 238, 243, 256, 260, 287, 295, 299, 304, 310, 318, 337 |
| abstract_inverted_index.was | 119, 251, 291 |
| abstract_inverted_index.2.42 | 323 |
| abstract_inverted_index.2019 | 223 |
| abstract_inverted_index.2020 | 225 |
| abstract_inverted_index.Faro | 228 |
| abstract_inverted_index.Most | 302 |
| abstract_inverted_index.STCs | 285, 306 |
| abstract_inverted_index.TLS. | 231 |
| abstract_inverted_index.area | 193 |
| abstract_inverted_index.been | 328 |
| abstract_inverted_index.both | 344 |
| abstract_inverted_index.from | 182 |
| abstract_inverted_index.have | 236 |
| abstract_inverted_index.lead | 45 |
| abstract_inverted_index.m2), | 166 |
| abstract_inverted_index.mass | 311 |
| abstract_inverted_index.most | 13 |
| abstract_inverted_index.over | 27, 161, 217, 357 |
| abstract_inverted_index.part | 297 |
| abstract_inverted_index.soil | 326 |
| abstract_inverted_index.this | 55 |
| abstract_inverted_index.thus | 270 |
| abstract_inverted_index.tool | 126 |
| abstract_inverted_index.user | 131 |
| abstract_inverted_index.were | 158, 176, 214, 267, 307 |
| abstract_inverted_index.with | 121 |
| abstract_inverted_index.(TLS) | 3 |
| abstract_inverted_index.(VHR) | 25 |
| abstract_inverted_index.Eight | 172 |
| abstract_inverted_index.Field | 232 |
| abstract_inverted_index.Focus | 229 |
| abstract_inverted_index.LiDAR | 1, 70 |
| abstract_inverted_index.Rough | 34 |
| abstract_inverted_index.STCs. | 279, 377 |
| abstract_inverted_index.aimed | 89 |
| abstract_inverted_index.based | 106 |
| abstract_inverted_index.field | 51, 81 |
| abstract_inverted_index.great | 352 |
| abstract_inverted_index.gully | 163, 192, 198, 219, 261, 300 |
| abstract_inverted_index.laser | 149 |
| abstract_inverted_index.local | 140 |
| abstract_inverted_index.newly | 60 |
| abstract_inverted_index.order | 202 |
| abstract_inverted_index.other | 30, 360 |
| abstract_inverted_index.rapid | 38 |
| abstract_inverted_index.their | 345 |
| abstract_inverted_index.tool, | 181 |
| abstract_inverted_index.total | 322 |
| abstract_inverted_index.using | 226 |
| abstract_inverted_index.where | 100, 247, 320, 364 |
| abstract_inverted_index.which | 128, 183 |
| abstract_inverted_index.whole | 111, 191 |
| abstract_inverted_index.years | 7 |
| abstract_inverted_index.(STCs) | 43 |
| abstract_inverted_index.(TPT), | 127 |
| abstract_inverted_index.99.10% | 195 |
| abstract_inverted_index.Island | 170 |
| abstract_inverted_index.adjust | 133 |
| abstract_inverted_index.allows | 129 |
| abstract_inverted_index.almost | 187 |
| abstract_inverted_index.chosen | 296 |
| abstract_inverted_index.deeply | 264 |
| abstract_inverted_index.models | 26 |
| abstract_inverted_index.period | 290 |
| abstract_inverted_index.study, | 56 |
| abstract_inverted_index.uphill | 315 |
| abstract_inverted_index.within | 255, 286 |
| abstract_inverted_index.Santiš | 164, 220 |
| abstract_inverted_index.applied | 209 |
| abstract_inverted_index.carried | 159, 215, 292 |
| abstract_inverted_index.changes | 42 |
| abstract_inverted_index.complex | 31, 197, 257, 361 |
| abstract_inverted_index.effects | 254 |
| abstract_inverted_index.emerged | 8 |
| abstract_inverted_index.eroded. | 329 |
| abstract_inverted_index.erosion | 39, 277, 283 |
| abstract_inverted_index.further | 355 |
| abstract_inverted_index.gradual | 314 |
| abstract_inverted_index.gullies | 28, 358 |
| abstract_inverted_index.headcut | 199, 262 |
| abstract_inverted_index.incised | 265 |
| abstract_inverted_index.induced | 40, 278, 284 |
| abstract_inverted_index.located | 167 |
| abstract_inverted_index.methods | 18 |
| abstract_inverted_index.optimal | 101, 116, 173 |
| abstract_inverted_index.phases. | 83 |
| abstract_inverted_index.planned | 184 |
| abstract_inverted_index.present | 58 |
| abstract_inverted_index.process | 112 |
| abstract_inverted_index.raising | 343 |
| abstract_inverted_index.related | 308 |
| abstract_inverted_index.retreat | 316 |
| abstract_inverted_index.surveys | 71, 213, 235, 368 |
| abstract_inverted_index.terrain | 35, 141 |
| abstract_inverted_index.through | 72 |
| abstract_inverted_index.(1226.97 | 165 |
| abstract_inverted_index.December | 222 |
| abstract_inverted_index.accuracy | 93, 239, 346 |
| abstract_inverted_index.accurate | 14, 272, 365 |
| abstract_inverted_index.allowing | 271 |
| abstract_inverted_index.analysis | 138 |
| abstract_inverted_index.collapse | 312 |
| abstract_inverted_index.coverage | 185, 249 |
| abstract_inverted_index.creation | 21 |
| abstract_inverted_index.detected | 305 |
| abstract_inverted_index.features | 363 |
| abstract_inverted_index.headcut, | 319 |
| abstract_inverted_index.headcut. | 301 |
| abstract_inverted_index.included | 186 |
| abstract_inverted_index.increase | 91 |
| abstract_inverted_index.observed | 288 |
| abstract_inverted_index.one-year | 289 |
| abstract_inverted_index.planning | 79 |
| abstract_inverted_index.reliable | 16 |
| abstract_inverted_index.required | 370 |
| abstract_inverted_index.scanning | 2 |
| abstract_inverted_index.surveys, | 99, 342 |
| abstract_inverted_index.surveys. | 53 |
| abstract_inverted_index.thorough | 76 |
| abstract_inverted_index.validate | 204 |
| abstract_inverted_index.(>95%) | 250 |
| abstract_inverted_index.Detection | 280 |
| abstract_inverted_index.Shadowing | 253 |
| abstract_inverted_index.achieved. | 252 |
| abstract_inverted_index.analysis. | 109 |
| abstract_inverted_index.automated | 120 |
| abstract_inverted_index.available | 147 |
| abstract_inverted_index.confirmed | 237 |
| abstract_inverted_index.detection | 273, 374 |
| abstract_inverted_index.developed | 61, 85, 123, 156, 244, 331 |
| abstract_inverted_index.different | 376 |
| abstract_inverted_index.features. | 33 |
| abstract_inverted_index.framework | 63, 87, 157, 333 |
| abstract_inverted_index.intensive | 282 |
| abstract_inverted_index.overhangs | 258 |
| abstract_inverted_index.positions | 103, 118, 175 |
| abstract_inverted_index.potential | 353 |
| abstract_inverted_index.preceding | 6 |
| abstract_inverted_index.scanners. | 150 |
| abstract_inverted_index.selection | 114 |
| abstract_inverted_index.very-high | 23, 248 |
| abstract_inverted_index.(Croatia). | 171 |
| abstract_inverted_index.Therefore, | 349 |
| abstract_inverted_index.challenges | 48 |
| abstract_inverted_index.determined | 105, 177 |
| abstract_inverted_index.framework, | 210, 246 |
| abstract_inverted_index.geomorphic | 32, 362 |
| abstract_inverted_index.geospatial | 17 |
| abstract_inverted_index.monitoring | 372 |
| abstract_inverted_index.morphology | 36 |
| abstract_inverted_index.parameters | 135 |
| abstract_inverted_index.pre-survey | 78 |
| abstract_inverted_index.resolution | 24 |
| abstract_inverted_index.systematic | 62, 77, 86, 245 |
| abstract_inverted_index.validation | 153 |
| abstract_inverted_index.visibility | 108, 137 |
| abstract_inverted_index.Application | 151 |
| abstract_inverted_index.Terrestrial | 0 |
| abstract_inverted_index.application | 356 |
| abstract_inverted_index.facilitated | 336 |
| abstract_inverted_index.morphology. | 200 |
| abstract_inverted_index.performance | 206 |
| abstract_inverted_index.positioning | 125 |
| abstract_inverted_index.preparation | 82 |
| abstract_inverted_index.reliability | 241 |
| abstract_inverted_index.significant | 47 |
| abstract_inverted_index.terrestrial | 69, 148 |
| abstract_inverted_index.minimalized, | 269 |
| abstract_inverted_index.optimization | 66, 332 |
| abstract_inverted_index.sub-channels | 266 |
| abstract_inverted_index.successfully | 268 |
| abstract_inverted_index.repeatability | 95 |
| abstract_inverted_index.significantly | 335 |
| abstract_inverted_index.implementation | 74, 338 |
| abstract_inverted_index.multi-temporal | 50, 68, 97, 211, 233, 340, 366 |
| abstract_inverted_index.quantification | 275 |
| abstract_inverted_index.repeatability. | 348 |
| abstract_inverted_index.specifications | 145 |
| abstract_inverted_index.characteristics | 142 |
| abstract_inverted_index.spatio-temporal | 41 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5035389832 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I56033108 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/15 |
| sustainable_development_goals[0].score | 0.6000000238418579 |
| sustainable_development_goals[0].display_name | Life in Land |
| citation_normalized_percentile.value | 0.69539799 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |