A New Wavelet Transform and Merging Generative Adversarial Network (WTM-GAN) Model for TEC Spatial Inpainting Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2025.3591103
Due to the uneven distribution of ground observatories, the effective data coverage of global ionospheric TEC is below 50%. The International GNSS Service provides a global ionosphere map based on a single shell assumption, derived from the ground-based observations. This serves as the main reference for global ionosphere morphology study. In this work, a new GAN model, wavelet transform and merging generative adversarial network (WTM-GAN) is proposed, designed for spatial completion of ionospheric TEC data with observation coverage deficiency. WTM-GAN is designed with an encoder–decoder architecture, using a Haar wavelet filter and a multilayer decoder employing segmentation and merging techniques. The performance is rigorously tested, achieving root-mean-square errors of 2.117 TECu and 0.908 TECu during both high and low solar activity years, respectively, and it obtains improvement of 0.945 TECu and 0.739 TECu over the comparison models. It also attained a peak signal-to-noise ratio over 32 dB, outperforming all comparisons. During geomagnetic storms, WTM-GAN effectively captures features in the equatorial ionization anomaly region, demonstrating enhanced spatial observation augmentation accuracy and stability. This framework offers a robust solution for TEC data completion, improving the reliability of ionospheric studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2025.3591103
- OA Status
- gold
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4412567238
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4412567238Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2025.3591103Digital Object Identifier
- Title
-
A New Wavelet Transform and Merging Generative Adversarial Network (WTM-GAN) Model for TEC Spatial InpaintingWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Kaicheng Yang, Yang Liu, Yifei Chen, Zhizhao Liu, Kaiyan Jin, Yanbo ZhuList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2025.3591103Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/jstars.2025.3591103Direct OA link when available
- Concepts
-
TEC, Inpainting, Wavelet transform, Computer science, Adversarial system, Generative adversarial network, Artificial intelligence, Wavelet, Computer vision, Pattern recognition (psychology), Image (mathematics), Algorithm, Geology, Geophysics, IonosphereTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4412567238 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2025.3591103 |
| ids.doi | https://doi.org/10.1109/jstars.2025.3591103 |
| ids.openalex | https://openalex.org/W4412567238 |
| fwci | 0.0 |
| type | article |
| title | A New Wavelet Transform and Merging Generative Adversarial Network (WTM-GAN) Model for TEC Spatial Inpainting |
| biblio.issue | |
| biblio.volume | 18 |
| biblio.last_page | 20544 |
| biblio.first_page | 20530 |
| topics[0].id | https://openalex.org/T10719 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9602000117301941 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2206 |
| topics[0].subfield.display_name | Computational Mechanics |
| topics[0].display_name | 3D Shape Modeling and Analysis |
| topics[1].id | https://openalex.org/T10775 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9435999989509583 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Generative Adversarial Networks and Image Synthesis |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C176379880 |
| concepts[0].level | 3 |
| concepts[0].score | 0.709791362285614 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q18031939 |
| concepts[0].display_name | TEC |
| concepts[1].id | https://openalex.org/C11727466 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6914851665496826 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1628157 |
| concepts[1].display_name | Inpainting |
| concepts[2].id | https://openalex.org/C196216189 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6227784156799316 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[2].display_name | Wavelet transform |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.6127698421478271 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C37736160 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5485790371894836 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1801315 |
| concepts[4].display_name | Adversarial system |
| concepts[5].id | https://openalex.org/C2988773926 |
| concepts[5].level | 3 |
| concepts[5].score | 0.49961256980895996 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q25104379 |
| concepts[5].display_name | Generative adversarial network |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.49563300609588623 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C47432892 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4924224615097046 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[7].display_name | Wavelet |
| concepts[8].id | https://openalex.org/C31972630 |
| concepts[8].level | 1 |
| concepts[8].score | 0.4286811053752899 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[8].display_name | Computer vision |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4163263738155365 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.35055166482925415 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32617878913879395 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C127313418 |
| concepts[12].level | 0 |
| concepts[12].score | 0.12593847513198853 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1069 |
| concepts[12].display_name | Geology |
| concepts[13].id | https://openalex.org/C8058405 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q46255 |
| concepts[13].display_name | Geophysics |
| concepts[14].id | https://openalex.org/C116403925 |
| concepts[14].level | 2 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q162219 |
| concepts[14].display_name | Ionosphere |
| keywords[0].id | https://openalex.org/keywords/tec |
| keywords[0].score | 0.709791362285614 |
| keywords[0].display_name | TEC |
| keywords[1].id | https://openalex.org/keywords/inpainting |
| keywords[1].score | 0.6914851665496826 |
| keywords[1].display_name | Inpainting |
| keywords[2].id | https://openalex.org/keywords/wavelet-transform |
| keywords[2].score | 0.6227784156799316 |
| keywords[2].display_name | Wavelet transform |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.6127698421478271 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/adversarial-system |
| keywords[4].score | 0.5485790371894836 |
| keywords[4].display_name | Adversarial system |
| keywords[5].id | https://openalex.org/keywords/generative-adversarial-network |
| keywords[5].score | 0.49961256980895996 |
| keywords[5].display_name | Generative adversarial network |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.49563300609588623 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/wavelet |
| keywords[7].score | 0.4924224615097046 |
| keywords[7].display_name | Wavelet |
| keywords[8].id | https://openalex.org/keywords/computer-vision |
| keywords[8].score | 0.4286811053752899 |
| keywords[8].display_name | Computer vision |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4163263738155365 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.35055166482925415 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.32617878913879395 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/geology |
| keywords[12].score | 0.12593847513198853 |
| keywords[12].display_name | Geology |
| language | en |
| locations[0].id | doi:10.1109/jstars.2025.3591103 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2025.3591103 |
| locations[1].id | pmh:oai:doaj.org/article:c9c7a4199fc044779a67d29f7765e8bb |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 18, Pp 20530-20544 (2025) |
| locations[1].landing_page_url | https://doaj.org/article/c9c7a4199fc044779a67d29f7765e8bb |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5108667375 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Kaicheng Yang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I82880672 |
| authorships[0].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Beihang University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Kunlin Yang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5100355701 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7874-5390 |
| authorships[1].author.display_name | Yang Liu |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I82880672 |
| authorships[1].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Beihang University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yang Liu |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[2].author.id | |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8240-0259 |
| authorships[2].author.display_name | |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[2].institutions[0].id | https://openalex.org/I82880672 |
| authorships[2].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Beihang University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yifei Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China |
| authorships[3].author.id | https://openalex.org/A5042517863 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-6822-9248 |
| authorships[3].author.display_name | Zhizhao Liu |
| authorships[3].countries | HK |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Land Surveying and GeoInformatics, The Hong Kong Polytechnic University, Hong Kong |
| authorships[3].institutions[0].id | https://openalex.org/I14243506 |
| authorships[3].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[3].institutions[0].country_code | HK |
| authorships[3].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Zhizhao Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Land Surveying and GeoInformatics, The Hong Kong Polytechnic University, Hong Kong |
| authorships[4].author.id | https://openalex.org/A5034642624 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Kaiyan Jin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Beihang University, Beijing, China |
| authorships[4].institutions[0].id | https://openalex.org/I82880672 |
| authorships[4].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Beihang University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Kaiyan Jin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Electronic and Information Engineering, Beihang University, Beijing, China |
| authorships[5].author.id | https://openalex.org/A5107142622 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-4579-795X |
| authorships[5].author.display_name | Yanbo Zhu |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I82880672 |
| authorships[5].affiliations[0].raw_affiliation_string | School of Electronic and Information Engineering, Beihang University, Beijing, China |
| authorships[5].institutions[0].id | https://openalex.org/I82880672 |
| authorships[5].institutions[0].ror | https://ror.org/00wk2mp56 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I82880672 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Beihang University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Yanbo Zhu |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | School of Electronic and Information Engineering, Beihang University, Beijing, China |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/jstars.2025.3591103 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A New Wavelet Transform and Merging Generative Adversarial Network (WTM-GAN) Model for TEC Spatial Inpainting |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10719 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9602000117301941 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2206 |
| primary_topic.subfield.display_name | Computational Mechanics |
| primary_topic.display_name | 3D Shape Modeling and Analysis |
| related_works | https://openalex.org/W2380775572, https://openalex.org/W4320519862, https://openalex.org/W2352870767, https://openalex.org/W2213520135, https://openalex.org/W4320519888, https://openalex.org/W2244018504, https://openalex.org/W2373034664, https://openalex.org/W4242046654, https://openalex.org/W2389876445, https://openalex.org/W4410783345 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2025.3591103 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3591103 |
| primary_location.id | doi:10.1109/jstars.2025.3591103 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2025.3591103 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4367146643, https://openalex.org/W2123195558, https://openalex.org/W2935333082, https://openalex.org/W2070957120, https://openalex.org/W2133328143, https://openalex.org/W2483834655, https://openalex.org/W4395071541, https://openalex.org/W4393253401, https://openalex.org/W2023488014, https://openalex.org/W2988262044, https://openalex.org/W2029557308, https://openalex.org/W1976050921, https://openalex.org/W2482625236, https://openalex.org/W1987326676, https://openalex.org/W4286377491, https://openalex.org/W179213921, https://openalex.org/W1989650393, https://openalex.org/W4387167448, https://openalex.org/W4205265189, https://openalex.org/W2970022383, https://openalex.org/W2153105094, https://openalex.org/W4380520286, https://openalex.org/W4308594722, https://openalex.org/W2911245679, https://openalex.org/W3144276858, https://openalex.org/W2982763192, https://openalex.org/W4384207671, https://openalex.org/W4378365341, https://openalex.org/W4391440583, https://openalex.org/W4393207086, https://openalex.org/W2909027832, https://openalex.org/W3016753238, https://openalex.org/W3014292598, https://openalex.org/W3131343281, https://openalex.org/W3208587333, https://openalex.org/W4280576658, https://openalex.org/W4312077178, https://openalex.org/W3138183084, https://openalex.org/W2109991658, https://openalex.org/W2343043644, https://openalex.org/W4293415084, https://openalex.org/W4321608471 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 24, 30, 53, 87, 92, 140, 174 |
| abstract_inverted_index.32 | 145 |
| abstract_inverted_index.In | 50 |
| abstract_inverted_index.It | 137 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.as | 41 |
| abstract_inverted_index.in | 157 |
| abstract_inverted_index.is | 16, 65, 80, 102 |
| abstract_inverted_index.it | 124 |
| abstract_inverted_index.of | 5, 12, 71, 108, 127, 184 |
| abstract_inverted_index.on | 29 |
| abstract_inverted_index.to | 1 |
| abstract_inverted_index.Due | 0 |
| abstract_inverted_index.GAN | 55 |
| abstract_inverted_index.TEC | 15, 73, 178 |
| abstract_inverted_index.The | 19, 100 |
| abstract_inverted_index.all | 148 |
| abstract_inverted_index.and | 59, 91, 97, 111, 117, 123, 130, 169 |
| abstract_inverted_index.dB, | 146 |
| abstract_inverted_index.for | 45, 68, 177 |
| abstract_inverted_index.low | 118 |
| abstract_inverted_index.map | 27 |
| abstract_inverted_index.new | 54 |
| abstract_inverted_index.the | 2, 8, 36, 42, 134, 158, 182 |
| abstract_inverted_index.GNSS | 21 |
| abstract_inverted_index.Haar | 88 |
| abstract_inverted_index.TECu | 110, 113, 129, 132 |
| abstract_inverted_index.This | 39, 171 |
| abstract_inverted_index.also | 138 |
| abstract_inverted_index.both | 115 |
| abstract_inverted_index.data | 10, 74, 179 |
| abstract_inverted_index.from | 35 |
| abstract_inverted_index.high | 116 |
| abstract_inverted_index.main | 43 |
| abstract_inverted_index.over | 133, 144 |
| abstract_inverted_index.peak | 141 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.with | 75, 82 |
| abstract_inverted_index.0.739 | 131 |
| abstract_inverted_index.0.908 | 112 |
| abstract_inverted_index.0.945 | 128 |
| abstract_inverted_index.2.117 | 109 |
| abstract_inverted_index.based | 28 |
| abstract_inverted_index.below | 17 |
| abstract_inverted_index.ratio | 143 |
| abstract_inverted_index.shell | 32 |
| abstract_inverted_index.solar | 119 |
| abstract_inverted_index.using | 86 |
| abstract_inverted_index.work, | 52 |
| abstract_inverted_index.During | 150 |
| abstract_inverted_index.during | 114 |
| abstract_inverted_index.errors | 107 |
| abstract_inverted_index.filter | 90 |
| abstract_inverted_index.global | 13, 25, 46 |
| abstract_inverted_index.ground | 6 |
| abstract_inverted_index.model, | 56 |
| abstract_inverted_index.offers | 173 |
| abstract_inverted_index.robust | 175 |
| abstract_inverted_index.serves | 40 |
| abstract_inverted_index.single | 31 |
| abstract_inverted_index.study. | 49 |
| abstract_inverted_index.uneven | 3 |
| abstract_inverted_index.years, | 121 |
| abstract_inverted_index.Service | 22 |
| abstract_inverted_index.WTM-GAN | 79, 153 |
| abstract_inverted_index.anomaly | 161 |
| abstract_inverted_index.decoder | 94 |
| abstract_inverted_index.derived | 34 |
| abstract_inverted_index.merging | 60, 98 |
| abstract_inverted_index.models. | 136 |
| abstract_inverted_index.network | 63 |
| abstract_inverted_index.obtains | 125 |
| abstract_inverted_index.region, | 162 |
| abstract_inverted_index.spatial | 69, 165 |
| abstract_inverted_index.storms, | 152 |
| abstract_inverted_index.tested, | 104 |
| abstract_inverted_index.wavelet | 57, 89 |
| abstract_inverted_index.accuracy | 168 |
| abstract_inverted_index.activity | 120 |
| abstract_inverted_index.attained | 139 |
| abstract_inverted_index.captures | 155 |
| abstract_inverted_index.coverage | 11, 77 |
| abstract_inverted_index.designed | 67, 81 |
| abstract_inverted_index.enhanced | 164 |
| abstract_inverted_index.features | 156 |
| abstract_inverted_index.provides | 23 |
| abstract_inverted_index.solution | 176 |
| abstract_inverted_index.studies. | 186 |
| abstract_inverted_index.(WTM-GAN) | 64 |
| abstract_inverted_index.achieving | 105 |
| abstract_inverted_index.effective | 9 |
| abstract_inverted_index.employing | 95 |
| abstract_inverted_index.framework | 172 |
| abstract_inverted_index.improving | 181 |
| abstract_inverted_index.proposed, | 66 |
| abstract_inverted_index.reference | 44 |
| abstract_inverted_index.transform | 58 |
| abstract_inverted_index.comparison | 135 |
| abstract_inverted_index.completion | 70 |
| abstract_inverted_index.equatorial | 159 |
| abstract_inverted_index.generative | 61 |
| abstract_inverted_index.ionization | 160 |
| abstract_inverted_index.ionosphere | 26, 47 |
| abstract_inverted_index.morphology | 48 |
| abstract_inverted_index.multilayer | 93 |
| abstract_inverted_index.rigorously | 103 |
| abstract_inverted_index.stability. | 170 |
| abstract_inverted_index.50%. | 18 |
| abstract_inverted_index.adversarial | 62 |
| abstract_inverted_index.assumption, | 33 |
| abstract_inverted_index.completion, | 180 |
| abstract_inverted_index.deficiency. | 78 |
| abstract_inverted_index.effectively | 154 |
| abstract_inverted_index.geomagnetic | 151 |
| abstract_inverted_index.improvement | 126 |
| abstract_inverted_index.ionospheric | 14, 72, 185 |
| abstract_inverted_index.observation | 76, 166 |
| abstract_inverted_index.performance | 101 |
| abstract_inverted_index.reliability | 183 |
| abstract_inverted_index.techniques. | 99 |
| abstract_inverted_index.augmentation | 167 |
| abstract_inverted_index.comparisons. | 149 |
| abstract_inverted_index.distribution | 4 |
| abstract_inverted_index.ground-based | 37 |
| abstract_inverted_index.segmentation | 96 |
| abstract_inverted_index.International | 20 |
| abstract_inverted_index.architecture, | 85 |
| abstract_inverted_index.demonstrating | 163 |
| abstract_inverted_index.observations. | 38 |
| abstract_inverted_index.outperforming | 147 |
| abstract_inverted_index.respectively, | 122 |
| abstract_inverted_index.observatories, | 7 |
| abstract_inverted_index.signal-to-noise | 142 |
| abstract_inverted_index.root-mean-square | 106 |
| abstract_inverted_index.encoder–decoder | 84 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.32061114 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |