A Newℓ0-Regularized Log-Linear Poisson Graphical Model with Applications to RNA Sequencing Data Article Swipe
Caesar Z. Li
,
Eric S. Kawaguchi
,
Gang Li
·
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1089/cmb.2020.0558
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1089/cmb.2020.0558
In this article, we develop a new ℓ 0 -based sparse Poisson graphical model with applications to gene network inference from RNA-seq gene expression count data. Assuming a pair-wise Markov property, we propose to fit a separate broken adaptive ridge-regularized log-linear Poisson regression on each node to evaluate the conditional, instead of marginal, association between two genes in the presence of all other genes. The resulting sparse gene networks are generally more accurate than those generated by the ℓ 1 -regularized Poisson graphical model as demonstrated by our empirical studies. A real data illustration is given on a kidney renal clear cell carcinoma micro-RNA-seq data from the Cancer Genome Atlas.
Related Topics
Concepts
Graphical model
Poisson distribution
Poisson regression
Count data
Inference
Computer science
Computational biology
Node (physics)
Markov chain
Algorithm
Mathematics
Data mining
Biology
Statistics
Artificial intelligence
Machine learning
Population
Engineering
Structural engineering
Demography
Sociology
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1089/cmb.2020.0558
- OA Status
- green
- Cited By
- 1
- References
- 44
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3189878693
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3189878693Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1089/cmb.2020.0558Digital Object Identifier
- Title
-
A Newℓ0-Regularized Log-Linear Poisson Graphical Model with Applications to RNA Sequencing DataWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-08-10Full publication date if available
- Authors
-
Caesar Z. Li, Eric S. Kawaguchi, Gang LiList of authors in order
- Landing page
-
https://doi.org/10.1089/cmb.2020.0558Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8558075Direct OA link when available
- Concepts
-
Graphical model, Poisson distribution, Poisson regression, Count data, Inference, Computer science, Computational biology, Node (physics), Markov chain, Algorithm, Mathematics, Data mining, Biology, Statistics, Artificial intelligence, Machine learning, Population, Engineering, Structural engineering, Demography, SociologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
44Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3189878693 |
|---|---|
| doi | https://doi.org/10.1089/cmb.2020.0558 |
| ids.doi | https://doi.org/10.1089/cmb.2020.0558 |
| ids.mag | 3189878693 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34375132 |
| ids.openalex | https://openalex.org/W3189878693 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | Q000235 |
| mesh[1].descriptor_ui | D002292 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | genetics |
| mesh[1].descriptor_name | Carcinoma, Renal Cell |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003196 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Computer Graphics |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D005786 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Gene Expression Regulation |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | Q000235 |
| mesh[5].descriptor_ui | D007680 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | genetics |
| mesh[5].descriptor_name | Kidney Neoplasms |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D016014 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Linear Models |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D035683 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | MicroRNAs |
| mesh[8].qualifier_ui | Q000235 |
| mesh[8].descriptor_ui | D009369 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | genetics |
| mesh[8].descriptor_name | Neoplasms |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D016012 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Poisson Distribution |
| mesh[10].qualifier_ui | Q000379 |
| mesh[10].descriptor_ui | D017423 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | methods |
| mesh[10].descriptor_name | Sequence Analysis, RNA |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D000465 |
| mesh[11].is_major_topic | True |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Algorithms |
| mesh[12].qualifier_ui | Q000235 |
| mesh[12].descriptor_ui | D002292 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | genetics |
| mesh[12].descriptor_name | Carcinoma, Renal Cell |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D003196 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Computer Graphics |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D005786 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Gene Expression Regulation |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D006801 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Humans |
| mesh[16].qualifier_ui | Q000235 |
| mesh[16].descriptor_ui | D007680 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | genetics |
| mesh[16].descriptor_name | Kidney Neoplasms |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D016014 |
| mesh[17].is_major_topic | True |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Linear Models |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D035683 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | MicroRNAs |
| mesh[19].qualifier_ui | Q000235 |
| mesh[19].descriptor_ui | D009369 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | genetics |
| mesh[19].descriptor_name | Neoplasms |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D016012 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Poisson Distribution |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D017423 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Sequence Analysis, RNA |
| type | article |
| title | A Newℓ0-Regularized Log-Linear Poisson Graphical Model with Applications to RNA Sequencing Data |
| biblio.issue | 9 |
| biblio.volume | 28 |
| biblio.last_page | 891 |
| biblio.first_page | 880 |
| topics[0].id | https://openalex.org/T10136 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods and Inference |
| topics[1].id | https://openalex.org/T10887 |
| topics[1].field.id | https://openalex.org/fields/13 |
| topics[1].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[1].score | 0.9853000044822693 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1312 |
| topics[1].subfield.display_name | Molecular Biology |
| topics[1].display_name | Bioinformatics and Genomic Networks |
| topics[2].id | https://openalex.org/T11901 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9771000146865845 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Bayesian Methods and Mixture Models |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155846161 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7207313776016235 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1143367 |
| concepts[0].display_name | Graphical model |
| concepts[1].id | https://openalex.org/C100906024 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6779516339302063 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q205692 |
| concepts[1].display_name | Poisson distribution |
| concepts[2].id | https://openalex.org/C73269764 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5902746319770813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q954529 |
| concepts[2].display_name | Poisson regression |
| concepts[3].id | https://openalex.org/C33643355 |
| concepts[3].level | 3 |
| concepts[3].score | 0.53202223777771 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5176731 |
| concepts[3].display_name | Count data |
| concepts[4].id | https://openalex.org/C2776214188 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5226314067840576 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[4].display_name | Inference |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.4923602342605591 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C70721500 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4260890781879425 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[6].display_name | Computational biology |
| concepts[7].id | https://openalex.org/C62611344 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4162874221801758 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1062658 |
| concepts[7].display_name | Node (physics) |
| concepts[8].id | https://openalex.org/C98763669 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4152109622955322 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q176645 |
| concepts[8].display_name | Markov chain |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3818991780281067 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.36431294679641724 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.36031055450439453 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.27825433015823364 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.2441498339176178 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C154945302 |
| concepts[14].level | 1 |
| concepts[14].score | 0.23518076539039612 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[14].display_name | Artificial intelligence |
| concepts[15].id | https://openalex.org/C119857082 |
| concepts[15].level | 1 |
| concepts[15].score | 0.1529083251953125 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[15].display_name | Machine learning |
| concepts[16].id | https://openalex.org/C2908647359 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[16].display_name | Population |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C66938386 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[18].display_name | Structural engineering |
| concepts[19].id | https://openalex.org/C149923435 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[19].display_name | Demography |
| concepts[20].id | https://openalex.org/C144024400 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[20].display_name | Sociology |
| keywords[0].id | https://openalex.org/keywords/graphical-model |
| keywords[0].score | 0.7207313776016235 |
| keywords[0].display_name | Graphical model |
| keywords[1].id | https://openalex.org/keywords/poisson-distribution |
| keywords[1].score | 0.6779516339302063 |
| keywords[1].display_name | Poisson distribution |
| keywords[2].id | https://openalex.org/keywords/poisson-regression |
| keywords[2].score | 0.5902746319770813 |
| keywords[2].display_name | Poisson regression |
| keywords[3].id | https://openalex.org/keywords/count-data |
| keywords[3].score | 0.53202223777771 |
| keywords[3].display_name | Count data |
| keywords[4].id | https://openalex.org/keywords/inference |
| keywords[4].score | 0.5226314067840576 |
| keywords[4].display_name | Inference |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.4923602342605591 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/computational-biology |
| keywords[6].score | 0.4260890781879425 |
| keywords[6].display_name | Computational biology |
| keywords[7].id | https://openalex.org/keywords/node |
| keywords[7].score | 0.4162874221801758 |
| keywords[7].display_name | Node (physics) |
| keywords[8].id | https://openalex.org/keywords/markov-chain |
| keywords[8].score | 0.4152109622955322 |
| keywords[8].display_name | Markov chain |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.3818991780281067 |
| keywords[9].display_name | Algorithm |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.36431294679641724 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.36031055450439453 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.27825433015823364 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.2441498339176178 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[14].score | 0.23518076539039612 |
| keywords[14].display_name | Artificial intelligence |
| keywords[15].id | https://openalex.org/keywords/machine-learning |
| keywords[15].score | 0.1529083251953125 |
| keywords[15].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1089/cmb.2020.0558 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S78571599 |
| locations[0].source.issn | 1066-5277, 1557-8666 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1066-5277 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Computational Biology |
| locations[0].source.host_organization | https://openalex.org/P4310320443 |
| locations[0].source.host_organization_name | Mary Ann Liebert, Inc. |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320443 |
| locations[0].source.host_organization_lineage_names | Mary Ann Liebert, Inc. |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Computational Biology |
| locations[0].landing_page_url | https://doi.org/10.1089/cmb.2020.0558 |
| locations[1].id | pmid:34375132 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of computational biology : a journal of computational molecular cell biology |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34375132 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8558075 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Comput Biol |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8558075 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5077429124 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3907-7983 |
| authorships[0].author.display_name | Caesar Z. Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California, USA. |
| authorships[0].institutions[0].id | https://openalex.org/I161318765 |
| authorships[0].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | University of California, Los Angeles |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Caesar Z. Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California, USA. |
| authorships[1].author.id | https://openalex.org/A5047542165 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2014-5023 |
| authorships[1].author.display_name | Eric S. Kawaguchi |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I1174212 |
| authorships[1].affiliations[0].raw_affiliation_string | Graduate Programs in Biostatistics and Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. |
| authorships[1].institutions[0].id | https://openalex.org/I1174212 |
| authorships[1].institutions[0].ror | https://ror.org/03taz7m60 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1174212 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | University of Southern California |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Eric S. Kawaguchi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Graduate Programs in Biostatistics and Epidemiology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA. |
| authorships[2].author.id | https://openalex.org/A5100438701 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4753-9420 |
| authorships[2].author.display_name | Gang Li |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I161318765 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California, USA. |
| authorships[2].institutions[0].id | https://openalex.org/I161318765 |
| authorships[2].institutions[0].ror | https://ror.org/046rm7j60 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I161318765 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | University of California, Los Angeles |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Gang Li |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, School of Public Health, University of California at Los Angeles, Los Angeles, California, USA. |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8558075 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Newℓ0-Regularized Log-Linear Poisson Graphical Model with Applications to RNA Sequencing Data |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10136 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods and Inference |
| related_works | https://openalex.org/W1578743158, https://openalex.org/W3088295586, https://openalex.org/W2060931646, https://openalex.org/W1849881158, https://openalex.org/W1590941618, https://openalex.org/W3210390693, https://openalex.org/W4280555366, https://openalex.org/W2503331259, https://openalex.org/W3134844154, https://openalex.org/W2270206682 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8558075 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Comput Biol |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8558075 |
| primary_location.id | doi:10.1089/cmb.2020.0558 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S78571599 |
| primary_location.source.issn | 1066-5277, 1557-8666 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1066-5277 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Computational Biology |
| primary_location.source.host_organization | https://openalex.org/P4310320443 |
| primary_location.source.host_organization_name | Mary Ann Liebert, Inc. |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320443 |
| primary_location.source.host_organization_lineage_names | Mary Ann Liebert, Inc. |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Computational Biology |
| primary_location.landing_page_url | https://doi.org/10.1089/cmb.2020.0558 |
| publication_date | 2021-08-10 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W1985435398, https://openalex.org/W1635119602, https://openalex.org/W1960424936, https://openalex.org/W2767225737, https://openalex.org/W1967653499, https://openalex.org/W2888331625, https://openalex.org/W2165909549, https://openalex.org/W2112814716, https://openalex.org/W2154560360, https://openalex.org/W2132555912, https://openalex.org/W2125631472, https://openalex.org/W2000534401, https://openalex.org/W2778105224, https://openalex.org/W2010795986, https://openalex.org/W3096771041, https://openalex.org/W1966327575, https://openalex.org/W4388323202, https://openalex.org/W2142165994, https://openalex.org/W3112516299, https://openalex.org/W2937297998, https://openalex.org/W2010824638, https://openalex.org/W2163702333, https://openalex.org/W1969752902, https://openalex.org/W194044816, https://openalex.org/W2005894982, https://openalex.org/W2144141220, https://openalex.org/W2030764127, https://openalex.org/W1972949866, https://openalex.org/W1965125844, https://openalex.org/W2887260238, https://openalex.org/W2905070591, https://openalex.org/W2029947124, https://openalex.org/W2020925091, https://openalex.org/W2075490785, https://openalex.org/W2922068014, https://openalex.org/W2097226863, https://openalex.org/W2514161540, https://openalex.org/W3098306969, https://openalex.org/W2061452886, https://openalex.org/W3099865464, https://openalex.org/W53332993, https://openalex.org/W3103302162, https://openalex.org/W3098834468, https://openalex.org/W2596585349 |
| referenced_works_count | 44 |
| abstract_inverted_index.A | 94 |
| abstract_inverted_index.a | 5, 29, 37, 101 |
| abstract_inverted_index.as | 88 |
| abstract_inverted_index.by | 78, 90 |
| abstract_inverted_index.in | 59 |
| abstract_inverted_index.is | 98 |
| abstract_inverted_index.of | 53, 62 |
| abstract_inverted_index.on | 45, 100 |
| abstract_inverted_index.to | 18, 35, 48 |
| abstract_inverted_index.we | 3, 33 |
| abstract_inverted_index.The | 66 |
| abstract_inverted_index.all | 63 |
| abstract_inverted_index.are | 71 |
| abstract_inverted_index.fit | 36 |
| abstract_inverted_index.new | 6 |
| abstract_inverted_index.our | 91 |
| abstract_inverted_index.the | 50, 60, 79, 110 |
| abstract_inverted_index.two | 57 |
| abstract_inverted_index.cell | 105 |
| abstract_inverted_index.data | 96, 108 |
| abstract_inverted_index.each | 46 |
| abstract_inverted_index.from | 22, 109 |
| abstract_inverted_index.gene | 19, 24, 69 |
| abstract_inverted_index.more | 73 |
| abstract_inverted_index.node | 47 |
| abstract_inverted_index.real | 95 |
| abstract_inverted_index.than | 75 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 16 |
| abstract_inverted_index.<b>In | 0 |
| abstract_inverted_index.<sub> | 8, 81 |
| abstract_inverted_index.clear | 104 |
| abstract_inverted_index.count | 26 |
| abstract_inverted_index.data. | 27 |
| abstract_inverted_index.genes | 58 |
| abstract_inverted_index.given | 99 |
| abstract_inverted_index.model | 15, 87 |
| abstract_inverted_index.other | 64 |
| abstract_inverted_index.renal | 103 |
| abstract_inverted_index.those | 76 |
| abstract_inverted_index.</sub> | 10, 83 |
| abstract_inverted_index.Cancer | 111 |
| abstract_inverted_index.Genome | 112 |
| abstract_inverted_index.Markov | 31 |
| abstract_inverted_index.broken | 39 |
| abstract_inverted_index.genes. | 65 |
| abstract_inverted_index.kidney | 102 |
| abstract_inverted_index.sparse | 12, 68 |
| abstract_inverted_index.Poisson | 13, 43, 85 |
| abstract_inverted_index.RNA-seq | 23 |
| abstract_inverted_index.between | 56 |
| abstract_inverted_index.develop | 4 |
| abstract_inverted_index.instead | 52 |
| abstract_inverted_index.network | 20 |
| abstract_inverted_index.propose | 34 |
| abstract_inverted_index.<b>0</b> | 9 |
| abstract_inverted_index.<b>1</b> | 82 |
| abstract_inverted_index.Assuming | 28 |
| abstract_inverted_index.accurate | 74 |
| abstract_inverted_index.adaptive | 40 |
| abstract_inverted_index.article, | 2 |
| abstract_inverted_index.evaluate | 49 |
| abstract_inverted_index.networks | 70 |
| abstract_inverted_index.presence | 61 |
| abstract_inverted_index.separate | 38 |
| abstract_inverted_index.studies. | 93 |
| abstract_inverted_index.<b>-based | 11 |
| abstract_inverted_index.carcinoma | 106 |
| abstract_inverted_index.empirical | 92 |
| abstract_inverted_index.generally | 72 |
| abstract_inverted_index.generated | 77 |
| abstract_inverted_index.graphical | 14, 86 |
| abstract_inverted_index.inference | 21 |
| abstract_inverted_index.marginal, | 54 |
| abstract_inverted_index.pair-wise | 30 |
| abstract_inverted_index.property, | 32 |
| abstract_inverted_index.resulting | 67 |
| abstract_inverted_index.Atlas.</b> | 113 |
| abstract_inverted_index.expression | 25 |
| abstract_inverted_index.log-linear | 42 |
| abstract_inverted_index.regression | 44 |
| abstract_inverted_index.association | 55 |
| abstract_inverted_index.applications | 17 |
| abstract_inverted_index.conditional, | 51 |
| abstract_inverted_index.demonstrated | 89 |
| abstract_inverted_index.illustration | 97 |
| abstract_inverted_index.micro-RNA-seq | 107 |
| abstract_inverted_index.<i>ℓ</i></b> | 7, 80 |
| abstract_inverted_index.<b>-regularized | 84 |
| abstract_inverted_index.ridge-regularized | 41 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5100438701 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| corresponding_institution_ids | https://openalex.org/I161318765 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.11555472 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |