A Non-Destructive Detection and Grading Method of the Internal Quality of Preserved Eggs Based on an Improved ConvNext Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/foods13060925
As a traditional delicacy in China, preserved eggs inevitably experience instances of substandard quality during the production process. Chinese preserved egg production facilities can only rely on experienced workers to select the preserved eggs. However, the manual selection of preserved eggs presents challenges such as a low efficiency, subjective judgments, high costs, and hindered industrial production processes. In response to these challenges, this study procured the transmitted imagery of preserved eggs and refined the ConvNeXt network across four pivotal dimensions: the dimensionality reduction of model feature maps, the integration of multi-scale feature fusion (MSFF), the incorporation of a global attention mechanism (GAM) module, and the amalgamation of the cross-entropy loss function with focal loss. The resultant refined model, ConvNeXt_PEgg, attained proficiency in classifying and grading preserved eggs. Notably, the improved model achieved a classification accuracy of 92.6% across the five categories of preserved eggs, with a grading accuracy of 95.9% spanning three levels. Moreover, in contrast to its predecessor, the refined model witnessed a 24.5% reduction in the parameter volume, alongside a 3.2 percentage point augmentation in the classification accuracy and a 2.8 percentage point boost in the grading accuracy. Through meticulous comparative analysis, each enhancement exhibited varying degrees of performance elevation. Evidently, the refined model outshone a plethora of classical models, underscoring its efficacy in discerning the internal quality of preserved eggs. With its potential for real-world implementation, this technology portends to heighten the economic viability of manufacturing facilities.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/foods13060925
- https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134
- OA Status
- gold
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392958065
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392958065Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/foods13060925Digital Object Identifier
- Title
-
A Non-Destructive Detection and Grading Method of the Internal Quality of Preserved Eggs Based on an Improved ConvNextWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-19Full publication date if available
- Authors
-
Wenquan Tang, Hao Zhang, Hao Chen, Wei Fan, Qiaohua WangList of authors in order
- Landing page
-
https://doi.org/10.3390/foods13060925Publisher landing page
- PDF URL
-
https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134Direct OA link when available
- Concepts
-
Grading (engineering), Computer science, Artificial intelligence, Dimensionality reduction, Mathematics, Statistics, Operations research, Biology, EcologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392958065 |
|---|---|
| doi | https://doi.org/10.3390/foods13060925 |
| ids.doi | https://doi.org/10.3390/foods13060925 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38540915 |
| ids.openalex | https://openalex.org/W4392958065 |
| fwci | 0.0 |
| type | article |
| title | A Non-Destructive Detection and Grading Method of the Internal Quality of Preserved Eggs Based on an Improved ConvNext |
| awards[0].id | https://openalex.org/G3009341755 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 32072302 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 6 |
| biblio.volume | 13 |
| biblio.last_page | 925 |
| biblio.first_page | 925 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9815000295639038 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10640 |
| topics[1].field.id | https://openalex.org/fields/16 |
| topics[1].field.display_name | Chemistry |
| topics[1].score | 0.9722999930381775 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1602 |
| topics[1].subfield.display_name | Analytical Chemistry |
| topics[1].display_name | Spectroscopy and Chemometric Analyses |
| topics[2].id | https://openalex.org/T10616 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9649999737739563 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Smart Agriculture and AI |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| is_xpac | False |
| apc_list.value | 2200 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2382 |
| apc_paid.value | 2200 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2382 |
| concepts[0].id | https://openalex.org/C2777286243 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6596666574478149 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q5591926 |
| concepts[0].display_name | Grading (engineering) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.48926684260368347 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.44422733783721924 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C70518039 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4150572121143341 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q16000077 |
| concepts[3].display_name | Dimensionality reduction |
| concepts[4].id | https://openalex.org/C33923547 |
| concepts[4].level | 0 |
| concepts[4].score | 0.3593832552433014 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[4].display_name | Mathematics |
| concepts[5].id | https://openalex.org/C105795698 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33774814009666443 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[5].display_name | Statistics |
| concepts[6].id | https://openalex.org/C42475967 |
| concepts[6].level | 1 |
| concepts[6].score | 0.3303832411766052 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[6].display_name | Operations research |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.15849116444587708 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C18903297 |
| concepts[8].level | 1 |
| concepts[8].score | 0.14150115847587585 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[8].display_name | Ecology |
| keywords[0].id | https://openalex.org/keywords/grading |
| keywords[0].score | 0.6596666574478149 |
| keywords[0].display_name | Grading (engineering) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.48926684260368347 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.44422733783721924 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/dimensionality-reduction |
| keywords[3].score | 0.4150572121143341 |
| keywords[3].display_name | Dimensionality reduction |
| keywords[4].id | https://openalex.org/keywords/mathematics |
| keywords[4].score | 0.3593832552433014 |
| keywords[4].display_name | Mathematics |
| keywords[5].id | https://openalex.org/keywords/statistics |
| keywords[5].score | 0.33774814009666443 |
| keywords[5].display_name | Statistics |
| keywords[6].id | https://openalex.org/keywords/operations-research |
| keywords[6].score | 0.3303832411766052 |
| keywords[6].display_name | Operations research |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.15849116444587708 |
| keywords[7].display_name | Biology |
| keywords[8].id | https://openalex.org/keywords/ecology |
| keywords[8].score | 0.14150115847587585 |
| keywords[8].display_name | Ecology |
| language | en |
| locations[0].id | doi:10.3390/foods13060925 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2737939966 |
| locations[0].source.issn | 2304-8158 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2304-8158 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Foods |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Foods |
| locations[0].landing_page_url | https://doi.org/10.3390/foods13060925 |
| locations[1].id | pmid:38540915 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Foods (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38540915 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10970058 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10970058/pdf/foods-13-00925.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Foods |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10970058 |
| locations[3].id | pmh:oai:doaj.org/article:5eb87009d4914a2481ecea2da0a08973 |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Foods, Vol 13, Iss 6, p 925 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/5eb87009d4914a2481ecea2da0a08973 |
| locations[4].id | pmh:oai:mdpi.com:/2304-8158/13/6/925/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Foods |
| locations[4].landing_page_url | https://dx.doi.org/10.3390/foods13060925 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5028115943 |
| authorships[0].author.orcid | https://orcid.org/0009-0004-5344-9984 |
| authorships[0].author.display_name | Wenquan Tang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[0].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[0].institutions[0].id | https://openalex.org/I204823248 |
| authorships[0].institutions[0].ror | https://ror.org/023b72294 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huazhong Agricultural University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenquan Tang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[1].author.id | https://openalex.org/A5100396844 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0404-6941 |
| authorships[1].author.display_name | Hao Zhang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[1].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[1].institutions[0].id | https://openalex.org/I204823248 |
| authorships[1].institutions[0].ror | https://ror.org/023b72294 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huazhong Agricultural University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Zhang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[2].author.id | https://openalex.org/A5100353673 |
| authorships[2].author.orcid | https://orcid.org/0009-0001-6480-7976 |
| authorships[2].author.display_name | Hao Chen |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[2].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[2].institutions[0].id | https://openalex.org/I204823248 |
| authorships[2].institutions[0].ror | https://ror.org/023b72294 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Huazhong Agricultural University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Haoran Chen |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[3].author.id | https://openalex.org/A5052291109 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-1967-5043 |
| authorships[3].author.display_name | Wei Fan |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[3].institutions[0].id | https://openalex.org/I204823248 |
| authorships[3].institutions[0].ror | https://ror.org/023b72294 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Huazhong Agricultural University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wei Fan |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[4].author.id | https://openalex.org/A5089588975 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3404-6907 |
| authorships[4].author.display_name | Qiaohua Wang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I204823248 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; |
| authorships[4].affiliations[1].raw_affiliation_string | Ministry of Agriculture Key Laboratory of Agricultural Equipment in the Middle and Lower Reaches of the Yangtze River, Wuhan 430070, China |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I204823248 |
| authorships[4].affiliations[2].raw_affiliation_string | National Research and Development Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China |
| authorships[4].institutions[0].id | https://openalex.org/I204823248 |
| authorships[4].institutions[0].ror | https://ror.org/023b72294 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I204823248 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Huazhong Agricultural University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Qiaohua Wang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Engineering, Huazhong Agricultural University, Wuhan 430070, China;, Ministry of Agriculture Key Laboratory of Agricultural Equipment in the Middle and Lower Reaches of the Yangtze River, Wuhan 430070, China, National Research and Development Center for Egg Processing, Huazhong Agricultural University, Wuhan 430070, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Non-Destructive Detection and Grading Method of the Internal Quality of Preserved Eggs Based on an Improved ConvNext |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9815000295639038 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2064165679, https://openalex.org/W3176621072, https://openalex.org/W1588461101, https://openalex.org/W3208525924, https://openalex.org/W2591833644, https://openalex.org/W2885058781, https://openalex.org/W3127248583, https://openalex.org/W1552490082, https://openalex.org/W4236439135, https://openalex.org/W2189583758 |
| cited_by_count | 0 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/foods13060925 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2737939966 |
| best_oa_location.source.issn | 2304-8158 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2304-8158 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Foods |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Foods |
| best_oa_location.landing_page_url | https://doi.org/10.3390/foods13060925 |
| primary_location.id | doi:10.3390/foods13060925 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2737939966 |
| primary_location.source.issn | 2304-8158 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2304-8158 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Foods |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2304-8158/13/6/925/pdf?version=1710829134 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Foods |
| primary_location.landing_page_url | https://doi.org/10.3390/foods13060925 |
| publication_date | 2024-03-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2729088210, https://openalex.org/W6753564899, https://openalex.org/W4312192518, https://openalex.org/W3152560009, https://openalex.org/W3037614668, https://openalex.org/W3040082811, https://openalex.org/W3165763044, https://openalex.org/W4366492301, https://openalex.org/W2348913371, https://openalex.org/W4206373356, https://openalex.org/W2077745745, https://openalex.org/W4386019061, https://openalex.org/W3013523275, https://openalex.org/W3154263107, https://openalex.org/W3198409110, https://openalex.org/W2954996726, https://openalex.org/W4312443924, https://openalex.org/W4377564760, https://openalex.org/W4382787307, https://openalex.org/W4384944490, https://openalex.org/W3176923149, https://openalex.org/W2885834204 |
| referenced_works_count | 22 |
| abstract_inverted_index.a | 1, 45, 97, 132, 145, 163, 171, 181, 207 |
| abstract_inverted_index.As | 0 |
| abstract_inverted_index.In | 57 |
| abstract_inverted_index.as | 44 |
| abstract_inverted_index.in | 4, 121, 154, 166, 176, 186, 215 |
| abstract_inverted_index.of | 11, 38, 68, 83, 89, 96, 106, 135, 141, 148, 199, 209, 220, 237 |
| abstract_inverted_index.on | 26 |
| abstract_inverted_index.to | 29, 59, 156, 232 |
| abstract_inverted_index.2.8 | 182 |
| abstract_inverted_index.3.2 | 172 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.and | 52, 71, 103, 123, 180 |
| abstract_inverted_index.can | 23 |
| abstract_inverted_index.egg | 20 |
| abstract_inverted_index.for | 226 |
| abstract_inverted_index.its | 157, 213, 224 |
| abstract_inverted_index.low | 46 |
| abstract_inverted_index.the | 15, 31, 35, 65, 73, 80, 87, 94, 104, 107, 128, 138, 159, 167, 177, 187, 203, 217, 234 |
| abstract_inverted_index.With | 223 |
| abstract_inverted_index.each | 194 |
| abstract_inverted_index.eggs | 7, 40, 70 |
| abstract_inverted_index.five | 139 |
| abstract_inverted_index.four | 77 |
| abstract_inverted_index.high | 50 |
| abstract_inverted_index.loss | 109 |
| abstract_inverted_index.only | 24 |
| abstract_inverted_index.rely | 25 |
| abstract_inverted_index.such | 43 |
| abstract_inverted_index.this | 62, 229 |
| abstract_inverted_index.with | 111, 144 |
| abstract_inverted_index.(GAM) | 101 |
| abstract_inverted_index.24.5% | 164 |
| abstract_inverted_index.92.6% | 136 |
| abstract_inverted_index.95.9% | 149 |
| abstract_inverted_index.boost | 185 |
| abstract_inverted_index.eggs, | 143 |
| abstract_inverted_index.eggs. | 33, 126, 222 |
| abstract_inverted_index.focal | 112 |
| abstract_inverted_index.loss. | 113 |
| abstract_inverted_index.maps, | 86 |
| abstract_inverted_index.model | 84, 130, 161, 205 |
| abstract_inverted_index.point | 174, 184 |
| abstract_inverted_index.study | 63 |
| abstract_inverted_index.these | 60 |
| abstract_inverted_index.three | 151 |
| abstract_inverted_index.China, | 5 |
| abstract_inverted_index.across | 76, 137 |
| abstract_inverted_index.costs, | 51 |
| abstract_inverted_index.during | 14 |
| abstract_inverted_index.fusion | 92 |
| abstract_inverted_index.global | 98 |
| abstract_inverted_index.manual | 36 |
| abstract_inverted_index.model, | 117 |
| abstract_inverted_index.select | 30 |
| abstract_inverted_index.(MSFF), | 93 |
| abstract_inverted_index.Chinese | 18 |
| abstract_inverted_index.Through | 190 |
| abstract_inverted_index.degrees | 198 |
| abstract_inverted_index.feature | 85, 91 |
| abstract_inverted_index.grading | 124, 146, 188 |
| abstract_inverted_index.imagery | 67 |
| abstract_inverted_index.levels. | 152 |
| abstract_inverted_index.models, | 211 |
| abstract_inverted_index.module, | 102 |
| abstract_inverted_index.network | 75 |
| abstract_inverted_index.pivotal | 78 |
| abstract_inverted_index.quality | 13, 219 |
| abstract_inverted_index.refined | 72, 116, 160, 204 |
| abstract_inverted_index.varying | 197 |
| abstract_inverted_index.volume, | 169 |
| abstract_inverted_index.workers | 28 |
| abstract_inverted_index.ConvNeXt | 74 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.Notably, | 127 |
| abstract_inverted_index.accuracy | 134, 147, 179 |
| abstract_inverted_index.achieved | 131 |
| abstract_inverted_index.attained | 119 |
| abstract_inverted_index.contrast | 155 |
| abstract_inverted_index.delicacy | 3 |
| abstract_inverted_index.economic | 235 |
| abstract_inverted_index.efficacy | 214 |
| abstract_inverted_index.function | 110 |
| abstract_inverted_index.heighten | 233 |
| abstract_inverted_index.hindered | 53 |
| abstract_inverted_index.improved | 129 |
| abstract_inverted_index.internal | 218 |
| abstract_inverted_index.outshone | 206 |
| abstract_inverted_index.plethora | 208 |
| abstract_inverted_index.portends | 231 |
| abstract_inverted_index.presents | 41 |
| abstract_inverted_index.process. | 17 |
| abstract_inverted_index.procured | 64 |
| abstract_inverted_index.response | 58 |
| abstract_inverted_index.spanning | 150 |
| abstract_inverted_index.Moreover, | 153 |
| abstract_inverted_index.accuracy. | 189 |
| abstract_inverted_index.alongside | 170 |
| abstract_inverted_index.analysis, | 193 |
| abstract_inverted_index.attention | 99 |
| abstract_inverted_index.classical | 210 |
| abstract_inverted_index.exhibited | 196 |
| abstract_inverted_index.instances | 10 |
| abstract_inverted_index.mechanism | 100 |
| abstract_inverted_index.parameter | 168 |
| abstract_inverted_index.potential | 225 |
| abstract_inverted_index.preserved | 6, 19, 32, 39, 69, 125, 142, 221 |
| abstract_inverted_index.reduction | 82, 165 |
| abstract_inverted_index.resultant | 115 |
| abstract_inverted_index.selection | 37 |
| abstract_inverted_index.viability | 236 |
| abstract_inverted_index.witnessed | 162 |
| abstract_inverted_index.Evidently, | 202 |
| abstract_inverted_index.categories | 140 |
| abstract_inverted_index.challenges | 42 |
| abstract_inverted_index.discerning | 216 |
| abstract_inverted_index.elevation. | 201 |
| abstract_inverted_index.experience | 9 |
| abstract_inverted_index.facilities | 22 |
| abstract_inverted_index.industrial | 54 |
| abstract_inverted_index.inevitably | 8 |
| abstract_inverted_index.judgments, | 49 |
| abstract_inverted_index.meticulous | 191 |
| abstract_inverted_index.percentage | 173, 183 |
| abstract_inverted_index.processes. | 56 |
| abstract_inverted_index.production | 16, 21, 55 |
| abstract_inverted_index.real-world | 227 |
| abstract_inverted_index.subjective | 48 |
| abstract_inverted_index.technology | 230 |
| abstract_inverted_index.challenges, | 61 |
| abstract_inverted_index.classifying | 122 |
| abstract_inverted_index.comparative | 192 |
| abstract_inverted_index.dimensions: | 79 |
| abstract_inverted_index.efficiency, | 47 |
| abstract_inverted_index.enhancement | 195 |
| abstract_inverted_index.experienced | 27 |
| abstract_inverted_index.facilities. | 239 |
| abstract_inverted_index.integration | 88 |
| abstract_inverted_index.multi-scale | 90 |
| abstract_inverted_index.performance | 200 |
| abstract_inverted_index.proficiency | 120 |
| abstract_inverted_index.substandard | 12 |
| abstract_inverted_index.traditional | 2 |
| abstract_inverted_index.transmitted | 66 |
| abstract_inverted_index.amalgamation | 105 |
| abstract_inverted_index.augmentation | 175 |
| abstract_inverted_index.predecessor, | 158 |
| abstract_inverted_index.underscoring | 212 |
| abstract_inverted_index.cross-entropy | 108 |
| abstract_inverted_index.incorporation | 95 |
| abstract_inverted_index.manufacturing | 238 |
| abstract_inverted_index.ConvNeXt_PEgg, | 118 |
| abstract_inverted_index.classification | 133, 178 |
| abstract_inverted_index.dimensionality | 81 |
| abstract_inverted_index.implementation, | 228 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5052291109 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I204823248 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.04919644 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |