A NON-PARAMETRIC FRAMEWORK FOR ANALYZING SPATIAL HETEROGENEITY AND CONTAMINATION PATHWAYS IN HEALTHCARE ENVIRONMENTS Article Swipe
Background: The systematic management of microbial bioburden in Class C healthcare cleanrooms is a critical factor in patient safety. Standard environmental monitoring often overlooks the complex spatial and statistical relationships of contamination. This study applies a rigorous statistical framework to a comprehensive environmental monitoring dataset to accurately map contamination risk. Methods: A cross-sectional analysis was performed on 318 microbial surface samples from 28 distinct operational locations in a Class C facility. Colony Forming Unit (CFU) data were analyzed using non-parametric statistics due to non-normal distribution, confirmed by Shapiro-Wilk tests on all locations with sufficient sample size (n=12). The Kruskal-Wallis test with Dunn's post-hoc analysis was used for group comparisons. Spearman's correlation was used to assess inter-location relationships. Results: Significant spatial heterogeneity in microbial contamination was confirmed (p<0.0001). Dunn's test identified CP C 11 W as the location with the highest contamination burden (mean CFU=12.17). The most statistically robust contrasts were observed when comparing high-burden sites against the cleanest location, CP C 32 WNme (mean CFU=0.67), which serves as a control benchmark. Multiple high-burden locations, including CP C 11 W and CP C 30 NCu, were found to be significantly more contaminated than this benchmark. No Spearman correlations survived the strict Bonferroni correction; however, the relationship between CP C 11 W and CP C 45 Wif (r=0.882, p<0.05) approached the significance threshold, suggesting a potential pathway requiring further investigation. Conclusions: Microbial contamination within the facility is spatially patterned, not random. The analysis provides a definitive hierarchy of risk, highlighting CP C 11 W as the primary target for enhanced sanitation. While correlational pathways could not be statistically confirmed, near-significant results provide a clear direction for future, more targeted sampling to validate operational links between zones. Peer Review History: Received 5 June 2025; Reviewed 12 July 2025; Accepted 24 August; Available online 15 September 2025 Academic Editor: Dr. Asia Selman Abdullah, Pharmacy institute, University of Basrah, Iraq, [email protected] Reviewers: Dr. Alfonso Alexander Aguileral, University of Veracruz, Mexico, [email protected] Dr. Ali Abdullah A. Al-Mehdar, University of Basrah, Iraq, [email protected]
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.22270/ujpr.v10i4.1390
- https://ujpronline.com/index.php/journal/article/download/1390/1941
- OA Status
- diamond
- OpenAlex ID
- https://openalex.org/W4414256815
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4414256815Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.22270/ujpr.v10i4.1390Digital Object Identifier
- Title
-
A NON-PARAMETRIC FRAMEWORK FOR ANALYZING SPATIAL HETEROGENEITY AND CONTAMINATION PATHWAYS IN HEALTHCARE ENVIRONMENTSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-09-15Full publication date if available
- Authors
-
Mostafa Essam EissaList of authors in order
- Landing page
-
https://doi.org/10.22270/ujpr.v10i4.1390Publisher landing page
- PDF URL
-
https://ujpronline.com/index.php/journal/article/download/1390/1941Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ujpronline.com/index.php/journal/article/download/1390/1941Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4414256815 |
|---|---|
| doi | https://doi.org/10.22270/ujpr.v10i4.1390 |
| ids.doi | https://doi.org/10.22270/ujpr.v10i4.1390 |
| ids.openalex | https://openalex.org/W4414256815 |
| fwci | 0.0 |
| type | article |
| title | A NON-PARAMETRIC FRAMEWORK FOR ANALYZING SPATIAL HETEROGENEITY AND CONTAMINATION PATHWAYS IN HEALTHCARE ENVIRONMENTS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T14152 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.7549999952316284 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3322 |
| topics[0].subfield.display_name | Urban Studies |
| topics[0].display_name | Healthcare Facilities Design and Sustainability |
| topics[1].id | https://openalex.org/T10809 |
| topics[1].field.id | https://openalex.org/fields/36 |
| topics[1].field.display_name | Health Professions |
| topics[1].score | 0.7139999866485596 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3614 |
| topics[1].subfield.display_name | Radiological and Ultrasound Technology |
| topics[1].display_name | Occupational Health and Safety Research |
| topics[2].id | https://openalex.org/T10804 |
| topics[2].field.id | https://openalex.org/fields/20 |
| topics[2].field.display_name | Economics, Econometrics and Finance |
| topics[2].score | 0.7092999815940857 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2002 |
| topics[2].subfield.display_name | Economics and Econometrics |
| topics[2].display_name | Health Systems, Economic Evaluations, Quality of Life |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.22270/ujpr.v10i4.1390 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210198516 |
| locations[0].source.issn | 2456-8058 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2456-8058 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Universal Journal of Pharmaceutical Research |
| locations[0].source.host_organization | https://openalex.org/P4323972972 |
| locations[0].source.host_organization_name | Society of Pharmaceutical Tecnocrats |
| locations[0].source.host_organization_lineage | https://openalex.org/P4323972972 |
| locations[0].source.host_organization_lineage_names | Society of Pharmaceutical Tecnocrats |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ujpronline.com/index.php/journal/article/download/1390/1941 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Universal Journal of Pharmaceutical Research |
| locations[0].landing_page_url | https://doi.org/10.22270/ujpr.v10i4.1390 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5057718323 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3562-5935 |
| authorships[0].author.display_name | Mostafa Essam Eissa |
| authorships[0].affiliations[0].raw_affiliation_string | Independent Researcher and Consultant, Cairo, Egypt. |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | None Mostafa Essam Eissa |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Independent Researcher and Consultant, Cairo, Egypt. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ujpronline.com/index.php/journal/article/download/1390/1941 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A NON-PARAMETRIC FRAMEWORK FOR ANALYZING SPATIAL HETEROGENEITY AND CONTAMINATION PATHWAYS IN HEALTHCARE ENVIRONMENTS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14152 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.7549999952316284 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3322 |
| primary_topic.subfield.display_name | Urban Studies |
| primary_topic.display_name | Healthcare Facilities Design and Sustainability |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.22270/ujpr.v10i4.1390 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210198516 |
| best_oa_location.source.issn | 2456-8058 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2456-8058 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Universal Journal of Pharmaceutical Research |
| best_oa_location.source.host_organization | https://openalex.org/P4323972972 |
| best_oa_location.source.host_organization_name | Society of Pharmaceutical Tecnocrats |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4323972972 |
| best_oa_location.source.host_organization_lineage_names | Society of Pharmaceutical Tecnocrats |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ujpronline.com/index.php/journal/article/download/1390/1941 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Universal Journal of Pharmaceutical Research |
| best_oa_location.landing_page_url | https://doi.org/10.22270/ujpr.v10i4.1390 |
| primary_location.id | doi:10.22270/ujpr.v10i4.1390 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210198516 |
| primary_location.source.issn | 2456-8058 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2456-8058 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Universal Journal of Pharmaceutical Research |
| primary_location.source.host_organization | https://openalex.org/P4323972972 |
| primary_location.source.host_organization_name | Society of Pharmaceutical Tecnocrats |
| primary_location.source.host_organization_lineage | https://openalex.org/P4323972972 |
| primary_location.source.host_organization_lineage_names | Society of Pharmaceutical Tecnocrats |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ujpronline.com/index.php/journal/article/download/1390/1941 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Universal Journal of Pharmaceutical Research |
| primary_location.landing_page_url | https://doi.org/10.22270/ujpr.v10i4.1390 |
| publication_date | 2025-09-15 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.5 | 288 |
| abstract_inverted_index.A | 51 |
| abstract_inverted_index.C | 9, 69, 131, 160, 176, 181, 207, 212, 249 |
| abstract_inverted_index.W | 133, 178, 209, 251 |
| abstract_inverted_index.a | 13, 35, 40, 67, 168, 222, 242, 270 |
| abstract_inverted_index.11 | 132, 177, 208, 250 |
| abstract_inverted_index.12 | 292 |
| abstract_inverted_index.15 | 300 |
| abstract_inverted_index.24 | 296 |
| abstract_inverted_index.28 | 62 |
| abstract_inverted_index.30 | 182 |
| abstract_inverted_index.32 | 161 |
| abstract_inverted_index.45 | 213 |
| abstract_inverted_index.A. | 329 |
| abstract_inverted_index.CP | 130, 159, 175, 180, 206, 211, 248 |
| abstract_inverted_index.No | 194 |
| abstract_inverted_index.as | 134, 167, 252 |
| abstract_inverted_index.be | 187, 264 |
| abstract_inverted_index.by | 86 |
| abstract_inverted_index.in | 7, 16, 66, 121 |
| abstract_inverted_index.is | 12, 234 |
| abstract_inverted_index.of | 4, 30, 245, 312, 322, 332 |
| abstract_inverted_index.on | 56, 89 |
| abstract_inverted_index.to | 39, 45, 82, 113, 186, 278 |
| abstract_inverted_index.318 | 57 |
| abstract_inverted_index.Ali | 327 |
| abstract_inverted_index.Dr. | 305, 317, 326 |
| abstract_inverted_index.The | 1, 97, 144, 239 |
| abstract_inverted_index.Wif | 214 |
| abstract_inverted_index.all | 90 |
| abstract_inverted_index.and | 27, 179, 210 |
| abstract_inverted_index.due | 81 |
| abstract_inverted_index.for | 106, 256, 273 |
| abstract_inverted_index.map | 47 |
| abstract_inverted_index.not | 237, 263 |
| abstract_inverted_index.the | 24, 135, 138, 156, 198, 203, 218, 232, 253 |
| abstract_inverted_index.was | 54, 104, 111, 124 |
| abstract_inverted_index.2025 | 302 |
| abstract_inverted_index.Asia | 306 |
| abstract_inverted_index.July | 293 |
| abstract_inverted_index.June | 289 |
| abstract_inverted_index.NCu, | 183 |
| abstract_inverted_index.Peer | 284 |
| abstract_inverted_index.This | 32 |
| abstract_inverted_index.Unit | 73 |
| abstract_inverted_index.WNme | 162 |
| abstract_inverted_index.data | 75 |
| abstract_inverted_index.from | 61 |
| abstract_inverted_index.more | 189, 275 |
| abstract_inverted_index.most | 145 |
| abstract_inverted_index.size | 95 |
| abstract_inverted_index.test | 99, 128 |
| abstract_inverted_index.than | 191 |
| abstract_inverted_index.this | 192 |
| abstract_inverted_index.used | 105, 112 |
| abstract_inverted_index.were | 76, 149, 184 |
| abstract_inverted_index.when | 151 |
| abstract_inverted_index.with | 92, 100, 137 |
| abstract_inverted_index.(CFU) | 74 |
| abstract_inverted_index.(mean | 142, 163 |
| abstract_inverted_index.2025; | 290, 294 |
| abstract_inverted_index.Class | 8, 68 |
| abstract_inverted_index.Iraq, | 314, 334 |
| abstract_inverted_index.While | 259 |
| abstract_inverted_index.clear | 271 |
| abstract_inverted_index.could | 262 |
| abstract_inverted_index.found | 185 |
| abstract_inverted_index.group | 107 |
| abstract_inverted_index.links | 281 |
| abstract_inverted_index.often | 22 |
| abstract_inverted_index.risk, | 246 |
| abstract_inverted_index.risk. | 49 |
| abstract_inverted_index.sites | 154 |
| abstract_inverted_index.study | 33 |
| abstract_inverted_index.tests | 88 |
| abstract_inverted_index.using | 78 |
| abstract_inverted_index.which | 165 |
| abstract_inverted_index.Colony | 71 |
| abstract_inverted_index.Dunn's | 101, 127 |
| abstract_inverted_index.Review | 285 |
| abstract_inverted_index.Selman | 307 |
| abstract_inverted_index.assess | 114 |
| abstract_inverted_index.burden | 141 |
| abstract_inverted_index.factor | 15 |
| abstract_inverted_index.online | 299 |
| abstract_inverted_index.robust | 147 |
| abstract_inverted_index.sample | 94 |
| abstract_inverted_index.serves | 166 |
| abstract_inverted_index.strict | 199 |
| abstract_inverted_index.target | 255 |
| abstract_inverted_index.within | 231 |
| abstract_inverted_index.zones. | 283 |
| abstract_inverted_index.(n=12). | 96 |
| abstract_inverted_index.Alfonso | 318 |
| abstract_inverted_index.August; | 297 |
| abstract_inverted_index.Basrah, | 313, 333 |
| abstract_inverted_index.Editor: | 304 |
| abstract_inverted_index.Forming | 72 |
| abstract_inverted_index.Mexico, | 324 |
| abstract_inverted_index.against | 155 |
| abstract_inverted_index.applies | 34 |
| abstract_inverted_index.between | 205, 282 |
| abstract_inverted_index.complex | 25 |
| abstract_inverted_index.control | 169 |
| abstract_inverted_index.dataset | 44 |
| abstract_inverted_index.further | 226 |
| abstract_inverted_index.future, | 274 |
| abstract_inverted_index.highest | 139 |
| abstract_inverted_index.pathway | 224 |
| abstract_inverted_index.patient | 17 |
| abstract_inverted_index.primary | 254 |
| abstract_inverted_index.provide | 269 |
| abstract_inverted_index.random. | 238 |
| abstract_inverted_index.results | 268 |
| abstract_inverted_index.safety. | 18 |
| abstract_inverted_index.samples | 60 |
| abstract_inverted_index.spatial | 26, 119 |
| abstract_inverted_index.surface | 59 |
| abstract_inverted_index.Abdullah | 328 |
| abstract_inverted_index.Academic | 303 |
| abstract_inverted_index.Accepted | 295 |
| abstract_inverted_index.History: | 286 |
| abstract_inverted_index.Methods: | 50 |
| abstract_inverted_index.Multiple | 171 |
| abstract_inverted_index.Pharmacy | 309 |
| abstract_inverted_index.Received | 287 |
| abstract_inverted_index.Results: | 117 |
| abstract_inverted_index.Reviewed | 291 |
| abstract_inverted_index.Spearman | 195 |
| abstract_inverted_index.Standard | 19 |
| abstract_inverted_index.analysis | 53, 103, 240 |
| abstract_inverted_index.analyzed | 77 |
| abstract_inverted_index.cleanest | 157 |
| abstract_inverted_index.critical | 14 |
| abstract_inverted_index.distinct | 63 |
| abstract_inverted_index.enhanced | 257 |
| abstract_inverted_index.facility | 233 |
| abstract_inverted_index.however, | 202 |
| abstract_inverted_index.location | 136 |
| abstract_inverted_index.observed | 150 |
| abstract_inverted_index.pathways | 261 |
| abstract_inverted_index.post-hoc | 102 |
| abstract_inverted_index.provides | 241 |
| abstract_inverted_index.rigorous | 36 |
| abstract_inverted_index.sampling | 277 |
| abstract_inverted_index.survived | 197 |
| abstract_inverted_index.targeted | 276 |
| abstract_inverted_index.validate | 279 |
| abstract_inverted_index.(r=0.882, | 215 |
| abstract_inverted_index.Abdullah, | 308 |
| abstract_inverted_index.Alexander | 319 |
| abstract_inverted_index.Available | 298 |
| abstract_inverted_index.Microbial | 229 |
| abstract_inverted_index.September | 301 |
| abstract_inverted_index.Veracruz, | 323 |
| abstract_inverted_index.bioburden | 6 |
| abstract_inverted_index.comparing | 152 |
| abstract_inverted_index.confirmed | 85, 125 |
| abstract_inverted_index.contrasts | 148 |
| abstract_inverted_index.direction | 272 |
| abstract_inverted_index.facility. | 70 |
| abstract_inverted_index.framework | 38 |
| abstract_inverted_index.hierarchy | 244 |
| abstract_inverted_index.including | 174 |
| abstract_inverted_index.location, | 158 |
| abstract_inverted_index.locations | 65, 91 |
| abstract_inverted_index.microbial | 5, 58, 122 |
| abstract_inverted_index.overlooks | 23 |
| abstract_inverted_index.performed | 55 |
| abstract_inverted_index.potential | 223 |
| abstract_inverted_index.requiring | 225 |
| abstract_inverted_index.spatially | 235 |
| abstract_inverted_index.Aguileral, | 320 |
| abstract_inverted_index.Al-Mehdar, | 330 |
| abstract_inverted_index.Bonferroni | 200 |
| abstract_inverted_index.CFU=0.67), | 164 |
| abstract_inverted_index.Reviewers: | 316 |
| abstract_inverted_index.Spearman's | 109 |
| abstract_inverted_index.University | 311, 321, 331 |
| abstract_inverted_index.accurately | 46 |
| abstract_inverted_index.approached | 217 |
| abstract_inverted_index.benchmark. | 170, 193 |
| abstract_inverted_index.cleanrooms | 11 |
| abstract_inverted_index.confirmed, | 266 |
| abstract_inverted_index.definitive | 243 |
| abstract_inverted_index.healthcare | 10 |
| abstract_inverted_index.identified | 129 |
| abstract_inverted_index.institute, | 310 |
| abstract_inverted_index.locations, | 173 |
| abstract_inverted_index.management | 3 |
| abstract_inverted_index.monitoring | 21, 43 |
| abstract_inverted_index.non-normal | 83 |
| abstract_inverted_index.p<0.05) | 216 |
| abstract_inverted_index.patterned, | 236 |
| abstract_inverted_index.statistics | 80 |
| abstract_inverted_index.sufficient | 93 |
| abstract_inverted_index.suggesting | 221 |
| abstract_inverted_index.systematic | 2 |
| abstract_inverted_index.threshold, | 220 |
| abstract_inverted_index.Background: | 0 |
| abstract_inverted_index.CFU=12.17). | 143 |
| abstract_inverted_index.Significant | 118 |
| abstract_inverted_index.correction; | 201 |
| abstract_inverted_index.correlation | 110 |
| abstract_inverted_index.high-burden | 153, 172 |
| abstract_inverted_index.operational | 64, 280 |
| abstract_inverted_index.sanitation. | 258 |
| abstract_inverted_index.statistical | 28, 37 |
| abstract_inverted_index.Conclusions: | 228 |
| abstract_inverted_index.Shapiro-Wilk | 87 |
| abstract_inverted_index.comparisons. | 108 |
| abstract_inverted_index.contaminated | 190 |
| abstract_inverted_index.correlations | 196 |
| abstract_inverted_index.highlighting | 247 |
| abstract_inverted_index.relationship | 204 |
| abstract_inverted_index.significance | 219 |
| abstract_inverted_index.comprehensive | 41 |
| abstract_inverted_index.contamination | 48, 123, 140, 230 |
| abstract_inverted_index.correlational | 260 |
| abstract_inverted_index.distribution, | 84 |
| abstract_inverted_index.environmental | 20, 42 |
| abstract_inverted_index.heterogeneity | 120 |
| abstract_inverted_index.relationships | 29 |
| abstract_inverted_index.significantly | 188 |
| abstract_inverted_index.statistically | 146, 265 |
| abstract_inverted_index.(p<0.0001). | 126 |
| abstract_inverted_index.Kruskal-Wallis | 98 |
| abstract_inverted_index.contamination. | 31 |
| abstract_inverted_index.inter-location | 115 |
| abstract_inverted_index.investigation. | 227 |
| abstract_inverted_index.non-parametric | 79 |
| abstract_inverted_index.relationships. | 116 |
| abstract_inverted_index.cross-sectional | 52 |
| abstract_inverted_index.near-significant | 267 |
| [email protected] | 325 |
| [email protected] | 315, 335 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5057718323 |
| countries_distinct_count | 0 |
| institutions_distinct_count | 1 |
| citation_normalized_percentile.value | 0.53369763 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |