A Nonlinear Local Approximation Approach for Catchment Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/e26030218
Catchment classification plays an important role in many applications associated with water resources and environment. In recent years, several studies have applied the concepts of nonlinear dynamics and chaos for catchment classification, mainly using dimensionality measures. The present study explores prediction as a measure for catchment classification, through application of a nonlinear local approximation prediction method. The method uses the concept of phase-space reconstruction of a time series to represent the underlying system dynamics and identifies nearest neighbors in the phase space for system evolution and prediction. The prediction accuracy measures, as well as the optimum values of the parameters involved in the method (e.g., phase space or embedding dimension, number of neighbors), are used for classification. For implementation, the method is applied to daily streamflow data from 218 catchments in Australia, and predictions are made for different embedding dimensions and number of neighbors. The prediction results suggest that phase-space reconstruction using streamflow alone can provide good predictions. The results also indicate that better predictions are achieved for lower embedding dimensions and smaller numbers of neighbors, suggesting possible low dimensionality of the streamflow dynamics. The classification results based on prediction accuracy are found to be useful for identification of regions/stations with higher predictability, which has important implications for interpolation or extrapolation of streamflow data.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/e26030218
- https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646
- OA Status
- gold
- Cited By
- 1
- References
- 77
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392354357
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392354357Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/e26030218Digital Object Identifier
- Title
-
A Nonlinear Local Approximation Approach for Catchment ClassificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-02-29Full publication date if available
- Authors
-
Shakera K. Khan, Bellie SivakumarList of authors in order
- Landing page
-
https://doi.org/10.3390/e26030218Publisher landing page
- PDF URL
-
https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646Direct OA link when available
- Concepts
-
Predictability, Extrapolation, Streamflow, Curse of dimensionality, Nonlinear system, Phase space, Computer science, Interpolation (computer graphics), Dimension (graph theory), Embedding, Mathematics, Data mining, Artificial intelligence, Statistics, Drainage basin, Geography, Physics, Motion (physics), Cartography, Quantum mechanics, Pure mathematics, ThermodynamicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
77Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392354357 |
|---|---|
| doi | https://doi.org/10.3390/e26030218 |
| ids.doi | https://doi.org/10.3390/e26030218 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38539730 |
| ids.openalex | https://openalex.org/W4392354357 |
| fwci | 0.39693981 |
| type | article |
| title | A Nonlinear Local Approximation Approach for Catchment Classification |
| awards[0].id | https://openalex.org/G407302466 |
| awards[0].funder_id | https://openalex.org/F4320334704 |
| awards[0].display_name | |
| awards[0].funder_award_id | FT110100328 |
| awards[0].funder_display_name | Australian Research Council |
| biblio.issue | 3 |
| biblio.volume | 26 |
| biblio.last_page | 218 |
| biblio.first_page | 218 |
| topics[0].id | https://openalex.org/T10330 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9994000196456909 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2312 |
| topics[0].subfield.display_name | Water Science and Technology |
| topics[0].display_name | Hydrology and Watershed Management Studies |
| topics[1].id | https://openalex.org/T11490 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9973999857902527 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Hydrological Forecasting Using AI |
| topics[2].id | https://openalex.org/T11186 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.9925000071525574 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2306 |
| topics[2].subfield.display_name | Global and Planetary Change |
| topics[2].display_name | Hydrology and Drought Analysis |
| funders[0].id | https://openalex.org/F4320334704 |
| funders[0].ror | https://ror.org/05mmh0f86 |
| funders[0].display_name | Australian Research Council |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C197640229 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7236900925636292 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2534066 |
| concepts[0].display_name | Predictability |
| concepts[1].id | https://openalex.org/C132459708 |
| concepts[1].level | 2 |
| concepts[1].score | 0.707393229007721 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q744069 |
| concepts[1].display_name | Extrapolation |
| concepts[2].id | https://openalex.org/C53739315 |
| concepts[2].level | 3 |
| concepts[2].score | 0.6926858425140381 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q29425295 |
| concepts[2].display_name | Streamflow |
| concepts[3].id | https://openalex.org/C111030470 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6254320740699768 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1430460 |
| concepts[3].display_name | Curse of dimensionality |
| concepts[4].id | https://openalex.org/C158622935 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5492368936538696 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q660848 |
| concepts[4].display_name | Nonlinear system |
| concepts[5].id | https://openalex.org/C151342819 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48307350277900696 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q62542 |
| concepts[5].display_name | Phase space |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.45853883028030396 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C137800194 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4389869272708893 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q11713455 |
| concepts[7].display_name | Interpolation (computer graphics) |
| concepts[8].id | https://openalex.org/C33676613 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4386339783668518 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q13415176 |
| concepts[8].display_name | Dimension (graph theory) |
| concepts[9].id | https://openalex.org/C41608201 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4176114797592163 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[9].display_name | Embedding |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.4147777855396271 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C124101348 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3885296881198883 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[11].display_name | Data mining |
| concepts[12].id | https://openalex.org/C154945302 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2995518445968628 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[12].display_name | Artificial intelligence |
| concepts[13].id | https://openalex.org/C105795698 |
| concepts[13].level | 1 |
| concepts[13].score | 0.20512062311172485 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[13].display_name | Statistics |
| concepts[14].id | https://openalex.org/C126645576 |
| concepts[14].level | 2 |
| concepts[14].score | 0.18696299195289612 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q166620 |
| concepts[14].display_name | Drainage basin |
| concepts[15].id | https://openalex.org/C205649164 |
| concepts[15].level | 0 |
| concepts[15].score | 0.1645134687423706 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[15].display_name | Geography |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C104114177 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[17].display_name | Motion (physics) |
| concepts[18].id | https://openalex.org/C58640448 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q42515 |
| concepts[18].display_name | Cartography |
| concepts[19].id | https://openalex.org/C62520636 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[19].display_name | Quantum mechanics |
| concepts[20].id | https://openalex.org/C202444582 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q837863 |
| concepts[20].display_name | Pure mathematics |
| concepts[21].id | https://openalex.org/C97355855 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q11473 |
| concepts[21].display_name | Thermodynamics |
| keywords[0].id | https://openalex.org/keywords/predictability |
| keywords[0].score | 0.7236900925636292 |
| keywords[0].display_name | Predictability |
| keywords[1].id | https://openalex.org/keywords/extrapolation |
| keywords[1].score | 0.707393229007721 |
| keywords[1].display_name | Extrapolation |
| keywords[2].id | https://openalex.org/keywords/streamflow |
| keywords[2].score | 0.6926858425140381 |
| keywords[2].display_name | Streamflow |
| keywords[3].id | https://openalex.org/keywords/curse-of-dimensionality |
| keywords[3].score | 0.6254320740699768 |
| keywords[3].display_name | Curse of dimensionality |
| keywords[4].id | https://openalex.org/keywords/nonlinear-system |
| keywords[4].score | 0.5492368936538696 |
| keywords[4].display_name | Nonlinear system |
| keywords[5].id | https://openalex.org/keywords/phase-space |
| keywords[5].score | 0.48307350277900696 |
| keywords[5].display_name | Phase space |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.45853883028030396 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/interpolation |
| keywords[7].score | 0.4389869272708893 |
| keywords[7].display_name | Interpolation (computer graphics) |
| keywords[8].id | https://openalex.org/keywords/dimension |
| keywords[8].score | 0.4386339783668518 |
| keywords[8].display_name | Dimension (graph theory) |
| keywords[9].id | https://openalex.org/keywords/embedding |
| keywords[9].score | 0.4176114797592163 |
| keywords[9].display_name | Embedding |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.4147777855396271 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/data-mining |
| keywords[11].score | 0.3885296881198883 |
| keywords[11].display_name | Data mining |
| keywords[12].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[12].score | 0.2995518445968628 |
| keywords[12].display_name | Artificial intelligence |
| keywords[13].id | https://openalex.org/keywords/statistics |
| keywords[13].score | 0.20512062311172485 |
| keywords[13].display_name | Statistics |
| keywords[14].id | https://openalex.org/keywords/drainage-basin |
| keywords[14].score | 0.18696299195289612 |
| keywords[14].display_name | Drainage basin |
| keywords[15].id | https://openalex.org/keywords/geography |
| keywords[15].score | 0.1645134687423706 |
| keywords[15].display_name | Geography |
| language | en |
| locations[0].id | doi:10.3390/e26030218 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S195231649 |
| locations[0].source.issn | 1099-4300 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1099-4300 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Entropy |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Entropy |
| locations[0].landing_page_url | https://doi.org/10.3390/e26030218 |
| locations[1].id | pmid:38539730 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Entropy (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38539730 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10968992 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10968992/pdf/entropy-26-00218.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Entropy (Basel) |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10968992 |
| locations[3].id | pmh:oai:doaj.org/article:f5ae01a41e7841769de004c8e183fede |
| locations[3].is_oa | False |
| locations[3].source.id | https://openalex.org/S4306401280 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[3].source.host_organization | |
| locations[3].source.host_organization_name | |
| locations[3].license | |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Entropy, Vol 26, Iss 3, p 218 (2024) |
| locations[3].landing_page_url | https://doaj.org/article/f5ae01a41e7841769de004c8e183fede |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5021383339 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shakera K. Khan |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1286406326 |
| authorships[0].affiliations[0].raw_affiliation_string | Water Forecasting Team, Environmental Prediction Services Program, Bureau of Meteorology, Sydney, NSW 2010, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I1286406326 |
| authorships[0].institutions[0].ror | https://ror.org/04dkp1p98 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1286406326 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Bureau of Meteorology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shakera K. Khan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Water Forecasting Team, Environmental Prediction Services Program, Bureau of Meteorology, Sydney, NSW 2010, Australia |
| authorships[1].author.id | https://openalex.org/A5008084305 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0523-890X |
| authorships[1].author.display_name | Bellie Sivakumar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162827531 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| authorships[1].institutions[0].id | https://openalex.org/I162827531 |
| authorships[1].institutions[0].ror | https://ror.org/02qyf5152 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162827531 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Indian Institute of Technology Bombay |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Bellie Sivakumar |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Nonlinear Local Approximation Approach for Catchment Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10330 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9994000196456909 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2312 |
| primary_topic.subfield.display_name | Water Science and Technology |
| primary_topic.display_name | Hydrology and Watershed Management Studies |
| related_works | https://openalex.org/W2726467123, https://openalex.org/W2064726690, https://openalex.org/W4252678288, https://openalex.org/W4254065731, https://openalex.org/W1607297154, https://openalex.org/W4210820789, https://openalex.org/W4237782192, https://openalex.org/W1968270095, https://openalex.org/W2125326499, https://openalex.org/W2951193830 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 4 |
| best_oa_location.id | doi:10.3390/e26030218 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S195231649 |
| best_oa_location.source.issn | 1099-4300 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1099-4300 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Entropy |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Entropy |
| best_oa_location.landing_page_url | https://doi.org/10.3390/e26030218 |
| primary_location.id | doi:10.3390/e26030218 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S195231649 |
| primary_location.source.issn | 1099-4300 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1099-4300 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Entropy |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1099-4300/26/3/218/pdf?version=1709218646 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Entropy |
| primary_location.landing_page_url | https://doi.org/10.3390/e26030218 |
| publication_date | 2024-02-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2067390833, https://openalex.org/W1974469975, https://openalex.org/W2086776003, https://openalex.org/W2020611078, https://openalex.org/W4281777140, https://openalex.org/W4386003746, https://openalex.org/W2135396999, https://openalex.org/W2135801689, https://openalex.org/W2194100214, https://openalex.org/W2064680444, https://openalex.org/W2041657053, https://openalex.org/W1533757126, https://openalex.org/W2124300082, https://openalex.org/W2110253516, https://openalex.org/W2115093617, https://openalex.org/W2937795699, https://openalex.org/W3014610070, https://openalex.org/W3205227645, https://openalex.org/W2044487056, https://openalex.org/W1988457368, https://openalex.org/W6674489297, https://openalex.org/W4213125069, https://openalex.org/W2150457759, https://openalex.org/W2013871107, https://openalex.org/W2142873921, https://openalex.org/W2156353061, https://openalex.org/W2041595215, https://openalex.org/W2041113710, https://openalex.org/W2019657798, https://openalex.org/W2066416365, https://openalex.org/W2026934896, https://openalex.org/W2126240438, https://openalex.org/W1965622732, https://openalex.org/W2148774617, https://openalex.org/W2008877191, https://openalex.org/W3010108958, https://openalex.org/W1969631772, https://openalex.org/W2051846929, https://openalex.org/W2112145028, https://openalex.org/W2060922500, https://openalex.org/W2132810424, https://openalex.org/W2553963136, https://openalex.org/W3119221890, https://openalex.org/W2555372793, https://openalex.org/W1984391316, https://openalex.org/W2492703958, https://openalex.org/W2029401646, https://openalex.org/W2476232484, https://openalex.org/W2094834228, https://openalex.org/W2040704490, https://openalex.org/W2034099719, https://openalex.org/W2090172491, https://openalex.org/W2011490939, https://openalex.org/W2055832077, https://openalex.org/W2096877980, https://openalex.org/W2050354311, https://openalex.org/W2150849744, https://openalex.org/W2101108516, https://openalex.org/W2071080899, https://openalex.org/W2132706579, https://openalex.org/W2318513751, https://openalex.org/W2066366061, https://openalex.org/W2046362987, https://openalex.org/W1998367480, https://openalex.org/W1498759836, https://openalex.org/W2108454139, https://openalex.org/W2164716356, https://openalex.org/W2733297725, https://openalex.org/W2126626202, https://openalex.org/W2781244252, https://openalex.org/W2064847727, https://openalex.org/W2058998445, https://openalex.org/W2037511922, https://openalex.org/W2164821706, https://openalex.org/W2037460094, https://openalex.org/W2033904036, https://openalex.org/W2095265820 |
| referenced_works_count | 77 |
| abstract_inverted_index.a | 42, 50, 65 |
| abstract_inverted_index.In | 15 |
| abstract_inverted_index.an | 3 |
| abstract_inverted_index.as | 41, 91, 93 |
| abstract_inverted_index.be | 194 |
| abstract_inverted_index.in | 6, 78, 101, 130 |
| abstract_inverted_index.is | 121 |
| abstract_inverted_index.of | 24, 49, 61, 64, 97, 111, 142, 174, 180, 198, 211 |
| abstract_inverted_index.on | 188 |
| abstract_inverted_index.or | 107, 209 |
| abstract_inverted_index.to | 68, 123, 193 |
| abstract_inverted_index.218 | 128 |
| abstract_inverted_index.For | 117 |
| abstract_inverted_index.The | 36, 56, 87, 144, 158, 184 |
| abstract_inverted_index.and | 13, 27, 74, 85, 132, 140, 171 |
| abstract_inverted_index.are | 113, 134, 165, 191 |
| abstract_inverted_index.can | 154 |
| abstract_inverted_index.for | 29, 44, 82, 115, 136, 167, 196, 207 |
| abstract_inverted_index.has | 204 |
| abstract_inverted_index.low | 178 |
| abstract_inverted_index.the | 22, 59, 70, 79, 94, 98, 102, 119, 181 |
| abstract_inverted_index.also | 160 |
| abstract_inverted_index.data | 126 |
| abstract_inverted_index.from | 127 |
| abstract_inverted_index.good | 156 |
| abstract_inverted_index.have | 20 |
| abstract_inverted_index.made | 135 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.role | 5 |
| abstract_inverted_index.that | 148, 162 |
| abstract_inverted_index.time | 66 |
| abstract_inverted_index.used | 114 |
| abstract_inverted_index.uses | 58 |
| abstract_inverted_index.well | 92 |
| abstract_inverted_index.with | 10, 200 |
| abstract_inverted_index.alone | 153 |
| abstract_inverted_index.based | 187 |
| abstract_inverted_index.chaos | 28 |
| abstract_inverted_index.daily | 124 |
| abstract_inverted_index.data. | 213 |
| abstract_inverted_index.found | 192 |
| abstract_inverted_index.local | 52 |
| abstract_inverted_index.lower | 168 |
| abstract_inverted_index.phase | 80, 105 |
| abstract_inverted_index.plays | 2 |
| abstract_inverted_index.space | 81, 106 |
| abstract_inverted_index.study | 38 |
| abstract_inverted_index.using | 33, 151 |
| abstract_inverted_index.water | 11 |
| abstract_inverted_index.which | 203 |
| abstract_inverted_index.(e.g., | 104 |
| abstract_inverted_index.better | 163 |
| abstract_inverted_index.higher | 201 |
| abstract_inverted_index.mainly | 32 |
| abstract_inverted_index.method | 57, 103, 120 |
| abstract_inverted_index.number | 110, 141 |
| abstract_inverted_index.recent | 16 |
| abstract_inverted_index.series | 67 |
| abstract_inverted_index.system | 72, 83 |
| abstract_inverted_index.useful | 195 |
| abstract_inverted_index.values | 96 |
| abstract_inverted_index.years, | 17 |
| abstract_inverted_index.applied | 21, 122 |
| abstract_inverted_index.concept | 60 |
| abstract_inverted_index.measure | 43 |
| abstract_inverted_index.method. | 55 |
| abstract_inverted_index.nearest | 76 |
| abstract_inverted_index.numbers | 173 |
| abstract_inverted_index.optimum | 95 |
| abstract_inverted_index.present | 37 |
| abstract_inverted_index.provide | 155 |
| abstract_inverted_index.results | 146, 159, 186 |
| abstract_inverted_index.several | 18 |
| abstract_inverted_index.smaller | 172 |
| abstract_inverted_index.studies | 19 |
| abstract_inverted_index.suggest | 147 |
| abstract_inverted_index.through | 47 |
| abstract_inverted_index.accuracy | 89, 190 |
| abstract_inverted_index.achieved | 166 |
| abstract_inverted_index.concepts | 23 |
| abstract_inverted_index.dynamics | 26, 73 |
| abstract_inverted_index.explores | 39 |
| abstract_inverted_index.indicate | 161 |
| abstract_inverted_index.involved | 100 |
| abstract_inverted_index.possible | 177 |
| abstract_inverted_index.Catchment | 0 |
| abstract_inverted_index.catchment | 30, 45 |
| abstract_inverted_index.different | 137 |
| abstract_inverted_index.dynamics. | 183 |
| abstract_inverted_index.embedding | 108, 138, 169 |
| abstract_inverted_index.evolution | 84 |
| abstract_inverted_index.important | 4, 205 |
| abstract_inverted_index.measures, | 90 |
| abstract_inverted_index.measures. | 35 |
| abstract_inverted_index.neighbors | 77 |
| abstract_inverted_index.nonlinear | 25, 51 |
| abstract_inverted_index.represent | 69 |
| abstract_inverted_index.resources | 12 |
| abstract_inverted_index.Australia, | 131 |
| abstract_inverted_index.associated | 9 |
| abstract_inverted_index.catchments | 129 |
| abstract_inverted_index.dimension, | 109 |
| abstract_inverted_index.dimensions | 139, 170 |
| abstract_inverted_index.identifies | 75 |
| abstract_inverted_index.neighbors, | 175 |
| abstract_inverted_index.neighbors. | 143 |
| abstract_inverted_index.parameters | 99 |
| abstract_inverted_index.prediction | 40, 54, 88, 145, 189 |
| abstract_inverted_index.streamflow | 125, 152, 182, 212 |
| abstract_inverted_index.suggesting | 176 |
| abstract_inverted_index.underlying | 71 |
| abstract_inverted_index.application | 48 |
| abstract_inverted_index.neighbors), | 112 |
| abstract_inverted_index.phase-space | 62, 149 |
| abstract_inverted_index.prediction. | 86 |
| abstract_inverted_index.predictions | 133, 164 |
| abstract_inverted_index.applications | 8 |
| abstract_inverted_index.environment. | 14 |
| abstract_inverted_index.implications | 206 |
| abstract_inverted_index.predictions. | 157 |
| abstract_inverted_index.approximation | 53 |
| abstract_inverted_index.extrapolation | 210 |
| abstract_inverted_index.interpolation | 208 |
| abstract_inverted_index.classification | 1, 185 |
| abstract_inverted_index.dimensionality | 34, 179 |
| abstract_inverted_index.identification | 197 |
| abstract_inverted_index.reconstruction | 63, 150 |
| abstract_inverted_index.classification, | 31, 46 |
| abstract_inverted_index.classification. | 116 |
| abstract_inverted_index.implementation, | 118 |
| abstract_inverted_index.predictability, | 202 |
| abstract_inverted_index.regions/stations | 199 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5008084305 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I162827531 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/6 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Clean water and sanitation |
| citation_normalized_percentile.value | 0.53198761 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |