A note on point estimation and interval estimation of the relative treatment effect under a simple crossover design Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1002/pst.2176
To increase power or reduce the number of patients needed for a parallel groups design, the crossover design has been often used to study treatments for noncurable chronic diseases. However, in the presence of carry‐over effect caused by treatments, the commonly‐used estimator which ignores the carry‐over effect leads to a biased estimator for estimating the treatment effect difference. A two‐stage test approach aimed to address carry‐over effect proposed was found to be potentially misleading. In this paper, we propose a weighted average of the commonly‐used estimator and an unbiased estimator that uses only the first period of the data. We derive an optimal weight that minimizes the mean squared error (MSE) and its modified estimator. We apply Monte Carlo simulation to evaluate the performance of the proposed estimators in a variety of situations. In the simulations, we examine the estimated MSE (EMSE), percentile interval length, and coverage probability calculated from the percentile intervals among considered estimators. Simulation results show that our proposed weighted average estimator and its modified estimator lead to smaller EMSEs on average comparing to the two commonly used estimators. The coverage probabilities using our proposed estimators are reasonably close to the nominal confidence level and the interval lengths are shorter comparing to the use of the unbiased estimator that uses only the first period of the data. We apply an example that was to evaluate the efficacy of two type of bronchodilators for asthma treatment to demonstrate the use of the proposed estimators.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1002/pst.2176
- OA Status
- green
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3212197965
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3212197965Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1002/pst.2176Digital Object Identifier
- Title
-
A note on point estimation and interval estimation of the relative treatment effect under a simple crossover designWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-09Full publication date if available
- Authors
-
Chii‐Dean Lin, Kung‐Jong LuiList of authors in order
- Landing page
-
https://doi.org/10.1002/pst.2176Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/9054161Direct OA link when available
- Concepts
-
Estimator, Mean squared error, Mathematics, Statistics, Percentile, Confidence interval, Coverage probability, Interval estimation, Monte Carlo method, Efficient estimator, Minimum-variance unbiased estimatorTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3212197965 |
|---|---|
| doi | https://doi.org/10.1002/pst.2176 |
| ids.doi | https://doi.org/10.1002/pst.2176 |
| ids.mag | 3212197965 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34755464 |
| ids.openalex | https://openalex.org/W3212197965 |
| fwci | 0.0 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D018592 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Cross-Over Studies |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D015233 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Models, Statistical |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D009010 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Monte Carlo Method |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D018592 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Cross-Over Studies |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D006801 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Humans |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D015233 |
| mesh[6].is_major_topic | True |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Models, Statistical |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D009010 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Monte Carlo Method |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D018592 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Cross-Over Studies |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D006801 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Humans |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D015233 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Models, Statistical |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D009010 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Monte Carlo Method |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D018592 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Cross-Over Studies |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D015233 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Models, Statistical |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D009010 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Monte Carlo Method |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D018592 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Cross-Over Studies |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D006801 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Humans |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D015233 |
| mesh[18].is_major_topic | True |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Models, Statistical |
| mesh[19].qualifier_ui | |
| mesh[19].descriptor_ui | D009010 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | |
| mesh[19].descriptor_name | Monte Carlo Method |
| type | article |
| title | A note on point estimation and interval estimation of the relative treatment effect under a simple crossover design |
| awards[0].id | https://openalex.org/G2930143235 |
| awards[0].funder_id | https://openalex.org/F4320337346 |
| awards[0].display_name | |
| awards[0].funder_award_id | R61MH120236‐01A1 |
| awards[0].funder_display_name | National Institute of Mental Health |
| awards[1].id | https://openalex.org/G702362048 |
| awards[1].funder_id | https://openalex.org/F4320337346 |
| awards[1].display_name | |
| awards[1].funder_award_id | U54MD012397 |
| awards[1].funder_display_name | National Institute of Mental Health |
| biblio.issue | 2 |
| biblio.volume | 21 |
| biblio.last_page | 394 |
| biblio.first_page | 386 |
| topics[0].id | https://openalex.org/T11235 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.9983000159263611 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2613 |
| topics[0].subfield.display_name | Statistics and Probability |
| topics[0].display_name | Statistical Methods in Clinical Trials |
| topics[1].id | https://openalex.org/T10845 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9969000220298767 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2613 |
| topics[1].subfield.display_name | Statistics and Probability |
| topics[1].display_name | Advanced Causal Inference Techniques |
| topics[2].id | https://openalex.org/T10243 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9797999858856201 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2613 |
| topics[2].subfield.display_name | Statistics and Probability |
| topics[2].display_name | Statistical Methods and Bayesian Inference |
| funders[0].id | https://openalex.org/F4320337346 |
| funders[0].ror | https://ror.org/04xeg9z08 |
| funders[0].display_name | National Institute of Mental Health |
| is_xpac | False |
| apc_list.value | 4430 |
| apc_list.currency | USD |
| apc_list.value_usd | 4430 |
| apc_paid | |
| concepts[0].id | https://openalex.org/C185429906 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8889025449752808 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[0].display_name | Estimator |
| concepts[1].id | https://openalex.org/C139945424 |
| concepts[1].level | 2 |
| concepts[1].score | 0.725806713104248 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1940696 |
| concepts[1].display_name | Mean squared error |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6735990047454834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C105795698 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6467936038970947 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[3].display_name | Statistics |
| concepts[4].id | https://openalex.org/C122048520 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6041631102561951 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2913954 |
| concepts[4].display_name | Percentile |
| concepts[5].id | https://openalex.org/C44249647 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5758386850357056 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q208498 |
| concepts[5].display_name | Confidence interval |
| concepts[6].id | https://openalex.org/C2776292839 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5229980945587158 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5179217 |
| concepts[6].display_name | Coverage probability |
| concepts[7].id | https://openalex.org/C205167067 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4498879909515381 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q3300636 |
| concepts[7].display_name | Interval estimation |
| concepts[8].id | https://openalex.org/C19499675 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42468899488449097 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q232207 |
| concepts[8].display_name | Monte Carlo method |
| concepts[9].id | https://openalex.org/C35594927 |
| concepts[9].level | 4 |
| concepts[9].score | 0.4172501564025879 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2265984 |
| concepts[9].display_name | Efficient estimator |
| concepts[10].id | https://openalex.org/C165646398 |
| concepts[10].level | 3 |
| concepts[10].score | 0.25545448064804077 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q3755281 |
| concepts[10].display_name | Minimum-variance unbiased estimator |
| keywords[0].id | https://openalex.org/keywords/estimator |
| keywords[0].score | 0.8889025449752808 |
| keywords[0].display_name | Estimator |
| keywords[1].id | https://openalex.org/keywords/mean-squared-error |
| keywords[1].score | 0.725806713104248 |
| keywords[1].display_name | Mean squared error |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.6735990047454834 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/statistics |
| keywords[3].score | 0.6467936038970947 |
| keywords[3].display_name | Statistics |
| keywords[4].id | https://openalex.org/keywords/percentile |
| keywords[4].score | 0.6041631102561951 |
| keywords[4].display_name | Percentile |
| keywords[5].id | https://openalex.org/keywords/confidence-interval |
| keywords[5].score | 0.5758386850357056 |
| keywords[5].display_name | Confidence interval |
| keywords[6].id | https://openalex.org/keywords/coverage-probability |
| keywords[6].score | 0.5229980945587158 |
| keywords[6].display_name | Coverage probability |
| keywords[7].id | https://openalex.org/keywords/interval-estimation |
| keywords[7].score | 0.4498879909515381 |
| keywords[7].display_name | Interval estimation |
| keywords[8].id | https://openalex.org/keywords/monte-carlo-method |
| keywords[8].score | 0.42468899488449097 |
| keywords[8].display_name | Monte Carlo method |
| keywords[9].id | https://openalex.org/keywords/efficient-estimator |
| keywords[9].score | 0.4172501564025879 |
| keywords[9].display_name | Efficient estimator |
| keywords[10].id | https://openalex.org/keywords/minimum-variance-unbiased-estimator |
| keywords[10].score | 0.25545448064804077 |
| keywords[10].display_name | Minimum-variance unbiased estimator |
| language | en |
| locations[0].id | doi:10.1002/pst.2176 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S141766756 |
| locations[0].source.issn | 1539-1604, 1539-1612 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1539-1604 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Pharmaceutical Statistics |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Pharmaceutical Statistics |
| locations[0].landing_page_url | https://doi.org/10.1002/pst.2176 |
| locations[1].id | pmid:34755464 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Pharmaceutical statistics |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34755464 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:9054161 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Pharm Stat |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9054161 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5085284996 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2055-6391 |
| authorships[0].author.display_name | Chii‐Dean Lin |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I26538001 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA |
| authorships[0].institutions[0].id | https://openalex.org/I26538001 |
| authorships[0].institutions[0].ror | https://ror.org/0264fdx42 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I26538001 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | San Diego State University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chii‐Dean Lin |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA |
| authorships[1].author.id | https://openalex.org/A5011952882 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5413-2514 |
| authorships[1].author.display_name | Kung‐Jong Lui |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I26538001 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA |
| authorships[1].institutions[0].id | https://openalex.org/I26538001 |
| authorships[1].institutions[0].ror | https://ror.org/0264fdx42 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I26538001 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | San Diego State University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Kung‐Jong Lui |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Mathematics and Statistics, San Diego State University, San Diego, California, USA |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9054161 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A note on point estimation and interval estimation of the relative treatment effect under a simple crossover design |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11235 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.9983000159263611 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2613 |
| primary_topic.subfield.display_name | Statistics and Probability |
| primary_topic.display_name | Statistical Methods in Clinical Trials |
| related_works | https://openalex.org/W2356451205, https://openalex.org/W1967656023, https://openalex.org/W1990624027, https://openalex.org/W1513121561, https://openalex.org/W2521986426, https://openalex.org/W402947472, https://openalex.org/W2106645586, https://openalex.org/W2059680804, https://openalex.org/W2593369667, https://openalex.org/W2563965625 |
| cited_by_count | 0 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:9054161 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Pharm Stat |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/9054161 |
| primary_location.id | doi:10.1002/pst.2176 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S141766756 |
| primary_location.source.issn | 1539-1604, 1539-1612 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1539-1604 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Pharmaceutical Statistics |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Pharmaceutical Statistics |
| primary_location.landing_page_url | https://doi.org/10.1002/pst.2176 |
| publication_date | 2021-11-09 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2138613293, https://openalex.org/W4229753260, https://openalex.org/W2014890161, https://openalex.org/W2013194198, https://openalex.org/W2002288054, https://openalex.org/W2069594609, https://openalex.org/W2044594089, https://openalex.org/W2313788008, https://openalex.org/W2065618389, https://openalex.org/W1968473409, https://openalex.org/W4302553524, https://openalex.org/W2115529833, https://openalex.org/W3015558145, https://openalex.org/W1973954680 |
| referenced_works_count | 14 |
| abstract_inverted_index.A | 59 |
| abstract_inverted_index.a | 12, 50, 80, 130 |
| abstract_inverted_index.In | 75, 134 |
| abstract_inverted_index.To | 1 |
| abstract_inverted_index.We | 100, 116, 221 |
| abstract_inverted_index.an | 88, 102, 223 |
| abstract_inverted_index.be | 72 |
| abstract_inverted_index.by | 38 |
| abstract_inverted_index.in | 31, 129 |
| abstract_inverted_index.of | 8, 34, 83, 97, 125, 132, 208, 218, 231, 234, 243 |
| abstract_inverted_index.on | 174 |
| abstract_inverted_index.or | 4 |
| abstract_inverted_index.to | 23, 49, 64, 71, 121, 171, 177, 193, 205, 227, 239 |
| abstract_inverted_index.we | 78, 137 |
| abstract_inverted_index.MSE | 141 |
| abstract_inverted_index.The | 183 |
| abstract_inverted_index.and | 87, 112, 146, 166, 198 |
| abstract_inverted_index.are | 190, 202 |
| abstract_inverted_index.for | 11, 26, 53, 236 |
| abstract_inverted_index.has | 19 |
| abstract_inverted_index.its | 113, 167 |
| abstract_inverted_index.our | 161, 187 |
| abstract_inverted_index.the | 6, 16, 32, 40, 45, 55, 84, 94, 98, 107, 123, 126, 135, 139, 151, 178, 194, 199, 206, 209, 215, 219, 229, 241, 244 |
| abstract_inverted_index.two | 179, 232 |
| abstract_inverted_index.use | 207, 242 |
| abstract_inverted_index.was | 69, 226 |
| abstract_inverted_index.been | 20 |
| abstract_inverted_index.from | 150 |
| abstract_inverted_index.lead | 170 |
| abstract_inverted_index.mean | 108 |
| abstract_inverted_index.only | 93, 214 |
| abstract_inverted_index.show | 159 |
| abstract_inverted_index.test | 61 |
| abstract_inverted_index.that | 91, 105, 160, 212, 225 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.type | 233 |
| abstract_inverted_index.used | 22, 181 |
| abstract_inverted_index.uses | 92, 213 |
| abstract_inverted_index.(MSE) | 111 |
| abstract_inverted_index.Carlo | 119 |
| abstract_inverted_index.EMSEs | 173 |
| abstract_inverted_index.Monte | 118 |
| abstract_inverted_index.aimed | 63 |
| abstract_inverted_index.among | 154 |
| abstract_inverted_index.apply | 117, 222 |
| abstract_inverted_index.close | 192 |
| abstract_inverted_index.data. | 99, 220 |
| abstract_inverted_index.error | 110 |
| abstract_inverted_index.first | 95, 216 |
| abstract_inverted_index.found | 70 |
| abstract_inverted_index.leads | 48 |
| abstract_inverted_index.level | 197 |
| abstract_inverted_index.often | 21 |
| abstract_inverted_index.power | 3 |
| abstract_inverted_index.study | 24 |
| abstract_inverted_index.using | 186 |
| abstract_inverted_index.which | 43 |
| abstract_inverted_index.asthma | 237 |
| abstract_inverted_index.biased | 51 |
| abstract_inverted_index.caused | 37 |
| abstract_inverted_index.derive | 101 |
| abstract_inverted_index.design | 18 |
| abstract_inverted_index.effect | 36, 47, 57, 67 |
| abstract_inverted_index.groups | 14 |
| abstract_inverted_index.needed | 10 |
| abstract_inverted_index.number | 7 |
| abstract_inverted_index.paper, | 77 |
| abstract_inverted_index.period | 96, 217 |
| abstract_inverted_index.reduce | 5 |
| abstract_inverted_index.weight | 104 |
| abstract_inverted_index.(EMSE), | 142 |
| abstract_inverted_index.address | 65 |
| abstract_inverted_index.average | 82, 164, 175 |
| abstract_inverted_index.chronic | 28 |
| abstract_inverted_index.design, | 15 |
| abstract_inverted_index.examine | 138 |
| abstract_inverted_index.example | 224 |
| abstract_inverted_index.ignores | 44 |
| abstract_inverted_index.length, | 145 |
| abstract_inverted_index.lengths | 201 |
| abstract_inverted_index.nominal | 195 |
| abstract_inverted_index.optimal | 103 |
| abstract_inverted_index.propose | 79 |
| abstract_inverted_index.results | 158 |
| abstract_inverted_index.shorter | 203 |
| abstract_inverted_index.smaller | 172 |
| abstract_inverted_index.squared | 109 |
| abstract_inverted_index.variety | 131 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 30 |
| abstract_inverted_index.approach | 62 |
| abstract_inverted_index.commonly | 180 |
| abstract_inverted_index.coverage | 147, 184 |
| abstract_inverted_index.efficacy | 230 |
| abstract_inverted_index.evaluate | 122, 228 |
| abstract_inverted_index.increase | 2 |
| abstract_inverted_index.interval | 144, 200 |
| abstract_inverted_index.modified | 114, 168 |
| abstract_inverted_index.parallel | 13 |
| abstract_inverted_index.patients | 9 |
| abstract_inverted_index.presence | 33 |
| abstract_inverted_index.proposed | 68, 127, 162, 188, 245 |
| abstract_inverted_index.unbiased | 89, 210 |
| abstract_inverted_index.weighted | 81, 163 |
| abstract_inverted_index.comparing | 176, 204 |
| abstract_inverted_index.crossover | 17 |
| abstract_inverted_index.diseases. | 29 |
| abstract_inverted_index.estimated | 140 |
| abstract_inverted_index.estimator | 42, 52, 86, 90, 165, 169, 211 |
| abstract_inverted_index.intervals | 153 |
| abstract_inverted_index.minimizes | 106 |
| abstract_inverted_index.treatment | 56, 238 |
| abstract_inverted_index.Simulation | 157 |
| abstract_inverted_index.calculated | 149 |
| abstract_inverted_index.confidence | 196 |
| abstract_inverted_index.considered | 155 |
| abstract_inverted_index.estimating | 54 |
| abstract_inverted_index.estimator. | 115 |
| abstract_inverted_index.estimators | 128, 189 |
| abstract_inverted_index.noncurable | 27 |
| abstract_inverted_index.percentile | 143, 152 |
| abstract_inverted_index.reasonably | 191 |
| abstract_inverted_index.simulation | 120 |
| abstract_inverted_index.treatments | 25 |
| abstract_inverted_index.demonstrate | 240 |
| abstract_inverted_index.difference. | 58 |
| abstract_inverted_index.estimators. | 156, 182, 246 |
| abstract_inverted_index.misleading. | 74 |
| abstract_inverted_index.performance | 124 |
| abstract_inverted_index.potentially | 73 |
| abstract_inverted_index.probability | 148 |
| abstract_inverted_index.situations. | 133 |
| abstract_inverted_index.treatments, | 39 |
| abstract_inverted_index.two‐stage | 60 |
| abstract_inverted_index.carry‐over | 35, 46, 66 |
| abstract_inverted_index.simulations, | 136 |
| abstract_inverted_index.probabilities | 185 |
| abstract_inverted_index.bronchodilators | 235 |
| abstract_inverted_index.commonly‐used | 41, 85 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5085284996 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 2 |
| corresponding_institution_ids | https://openalex.org/I26538001 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7400000095367432 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.1627262 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |