A novel Adaptive Weighted Transfer Subspace Learning Method for Cross-Database Speech Emotion Recognition Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1587/transinf.2022edl8021
In this letter, we present an adaptive weighted transfer subspace learning (AWTSL) method for cross-database speech emotion recognition (SER), which can efficiently eliminate the discrepancy between source and target databases. Specifically, on one hand, a subspace projection matrix is first learned to project the cross-database features into a common subspace. At the same time, each target sample can be represented by the source samples by using a sparse reconstruction matrix. On the other hand, we design an adaptive weighted matrix learning strategy, which can improve the reconstruction contribution of important features and eliminate the negative influence of redundant features. Finally, we conduct extensive experiments on four benchmark databases, and the experimental results demonstrate the efficacy of the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1587/transinf.2022edl8021
- https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdf
- OA Status
- diamond
- Cited By
- 1
- References
- 15
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4294640251
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4294640251Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1587/transinf.2022edl8021Digital Object Identifier
- Title
-
A novel Adaptive Weighted Transfer Subspace Learning Method for Cross-Database Speech Emotion RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-31Full publication date if available
- Authors
-
Keke Zhao, Peng Song, Shaokai Li, Wenjing Zhang, Wenming ZhengList of authors in order
- Landing page
-
https://doi.org/10.1587/transinf.2022edl8021Publisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdfDirect OA link when available
- Concepts
-
Subspace topology, Computer science, Benchmark (surveying), Projection (relational algebra), Artificial intelligence, Pattern recognition (psychology), Transfer of learning, Speech recognition, Machine learning, Algorithm, Geography, GeodesyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4294640251 |
|---|---|
| doi | https://doi.org/10.1587/transinf.2022edl8021 |
| ids.doi | https://doi.org/10.1587/transinf.2022edl8021 |
| ids.openalex | https://openalex.org/W4294640251 |
| fwci | 0.19495729 |
| type | article |
| title | A novel Adaptive Weighted Transfer Subspace Learning Method for Cross-Database Speech Emotion Recognition |
| biblio.issue | 9 |
| biblio.volume | E105.D |
| biblio.last_page | 1646 |
| biblio.first_page | 1643 |
| topics[0].id | https://openalex.org/T10860 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9986000061035156 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1711 |
| topics[0].subfield.display_name | Signal Processing |
| topics[0].display_name | Speech and Audio Processing |
| topics[1].id | https://openalex.org/T10057 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9951000213623047 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face and Expression Recognition |
| topics[2].id | https://openalex.org/T12676 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9944000244140625 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Machine Learning and ELM |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C32834561 |
| concepts[0].level | 2 |
| concepts[0].score | 0.862586498260498 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[0].display_name | Subspace topology |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.8518469333648682 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.699145495891571 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C57493831 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6109178066253662 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q3134666 |
| concepts[3].display_name | Projection (relational algebra) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.551720917224884 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5085645914077759 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C150899416 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4930228888988495 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[6].display_name | Transfer of learning |
| concepts[7].id | https://openalex.org/C28490314 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3990916907787323 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q189436 |
| concepts[7].display_name | Speech recognition |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3680671453475952 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C11413529 |
| concepts[9].level | 1 |
| concepts[9].score | 0.21342742443084717 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[9].display_name | Algorithm |
| concepts[10].id | https://openalex.org/C205649164 |
| concepts[10].level | 0 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[10].display_name | Geography |
| concepts[11].id | https://openalex.org/C13280743 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[11].display_name | Geodesy |
| keywords[0].id | https://openalex.org/keywords/subspace-topology |
| keywords[0].score | 0.862586498260498 |
| keywords[0].display_name | Subspace topology |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.8518469333648682 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.699145495891571 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/projection |
| keywords[3].score | 0.6109178066253662 |
| keywords[3].display_name | Projection (relational algebra) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.551720917224884 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.5085645914077759 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[6].score | 0.4930228888988495 |
| keywords[6].display_name | Transfer of learning |
| keywords[7].id | https://openalex.org/keywords/speech-recognition |
| keywords[7].score | 0.3990916907787323 |
| keywords[7].display_name | Speech recognition |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.3680671453475952 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/algorithm |
| keywords[9].score | 0.21342742443084717 |
| keywords[9].display_name | Algorithm |
| language | en |
| locations[0].id | doi:10.1587/transinf.2022edl8021 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2486202937 |
| locations[0].source.issn | 0916-8532, 1745-1361 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0916-8532 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEICE Transactions on Information and Systems |
| locations[0].source.host_organization | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEICE Transactions on Information and Systems |
| locations[0].landing_page_url | https://doi.org/10.1587/transinf.2022edl8021 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5077653457 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Keke Zhao |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[0].institutions[0].id | https://openalex.org/I18452120 |
| authorships[0].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yantai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Keke ZHAO |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[1].author.id | https://openalex.org/A5009279384 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6567-663X |
| authorships[1].author.display_name | Peng Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[1].institutions[0].id | https://openalex.org/I18452120 |
| authorships[1].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yantai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng SONG |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[2].author.id | https://openalex.org/A5000061781 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1684-043X |
| authorships[2].author.display_name | Shaokai Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[2].institutions[0].id | https://openalex.org/I18452120 |
| authorships[2].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Yantai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shaokai LI |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[3].author.id | https://openalex.org/A5100407206 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5011-1951 |
| authorships[3].author.display_name | Wenjing Zhang |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[3].institutions[0].id | https://openalex.org/I18452120 |
| authorships[3].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Yantai University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Wenjing ZHANG |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[4].author.id | https://openalex.org/A5029771864 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[4].author.display_name | Wenming Zheng |
| authorships[4].countries | CL |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210100356 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science, Ministry of Education, and School of Biological Science and Medical Engineering, Southeast University |
| authorships[4].institutions[0].id | https://openalex.org/I4210100356 |
| authorships[4].institutions[0].ror | https://ror.org/018f7hf93 |
| authorships[4].institutions[0].type | government |
| authorships[4].institutions[0].lineage | https://openalex.org/I4210100356 |
| authorships[4].institutions[0].country_code | CL |
| authorships[4].institutions[0].display_name | Ministry of Education |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Wenming ZHENG |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science, Ministry of Education, and School of Biological Science and Medical Engineering, Southeast University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A novel Adaptive Weighted Transfer Subspace Learning Method for Cross-Database Speech Emotion Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10860 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9986000061035156 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1711 |
| primary_topic.subfield.display_name | Signal Processing |
| primary_topic.display_name | Speech and Audio Processing |
| related_works | https://openalex.org/W4288040045, https://openalex.org/W4308262314, https://openalex.org/W2042327336, https://openalex.org/W4382286161, https://openalex.org/W4386213806, https://openalex.org/W35176419, https://openalex.org/W2960456850, https://openalex.org/W3021430260, https://openalex.org/W2543161807, https://openalex.org/W2321141263 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1587/transinf.2022edl8021 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2486202937 |
| best_oa_location.source.issn | 0916-8532, 1745-1361 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0916-8532 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEICE Transactions on Information and Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEICE Transactions on Information and Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1587/transinf.2022edl8021 |
| primary_location.id | doi:10.1587/transinf.2022edl8021 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2486202937 |
| primary_location.source.issn | 0916-8532, 1745-1361 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0916-8532 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEICE Transactions on Information and Systems |
| primary_location.source.host_organization | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/9/E105.D_2022EDL8021/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEICE Transactions on Information and Systems |
| primary_location.landing_page_url | https://doi.org/10.1587/transinf.2022edl8021 |
| publication_date | 2022-08-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2997399314, https://openalex.org/W2070960031, https://openalex.org/W2916332638, https://openalex.org/W3041133507, https://openalex.org/W2125462608, https://openalex.org/W2113087918, https://openalex.org/W2802656254, https://openalex.org/W2794365923, https://openalex.org/W2989798836, https://openalex.org/W4292363360, https://openalex.org/W147964346, https://openalex.org/W2096943734, https://openalex.org/W2057266281, https://openalex.org/W2283717164, https://openalex.org/W2992062578 |
| referenced_works_count | 15 |
| abstract_inverted_index.a | 34, 47, 66 |
| abstract_inverted_index.At | 50 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.On | 70 |
| abstract_inverted_index.an | 5, 76 |
| abstract_inverted_index.be | 58 |
| abstract_inverted_index.by | 60, 64 |
| abstract_inverted_index.is | 38 |
| abstract_inverted_index.of | 88, 96, 115 |
| abstract_inverted_index.on | 31, 104 |
| abstract_inverted_index.to | 41 |
| abstract_inverted_index.we | 3, 74, 100 |
| abstract_inverted_index.and | 27, 91, 108 |
| abstract_inverted_index.can | 20, 57, 83 |
| abstract_inverted_index.for | 13 |
| abstract_inverted_index.one | 32 |
| abstract_inverted_index.the | 23, 43, 51, 61, 71, 85, 93, 109, 113, 116 |
| abstract_inverted_index.each | 54 |
| abstract_inverted_index.four | 105 |
| abstract_inverted_index.into | 46 |
| abstract_inverted_index.same | 52 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.first | 39 |
| abstract_inverted_index.hand, | 33, 73 |
| abstract_inverted_index.other | 72 |
| abstract_inverted_index.time, | 53 |
| abstract_inverted_index.using | 65 |
| abstract_inverted_index.which | 19, 82 |
| abstract_inverted_index.(SER), | 18 |
| abstract_inverted_index.common | 48 |
| abstract_inverted_index.design | 75 |
| abstract_inverted_index.matrix | 37, 79 |
| abstract_inverted_index.method | 12 |
| abstract_inverted_index.sample | 56 |
| abstract_inverted_index.source | 26, 62 |
| abstract_inverted_index.sparse | 67 |
| abstract_inverted_index.speech | 15 |
| abstract_inverted_index.target | 28, 55 |
| abstract_inverted_index.(AWTSL) | 11 |
| abstract_inverted_index.between | 25 |
| abstract_inverted_index.conduct | 101 |
| abstract_inverted_index.emotion | 16 |
| abstract_inverted_index.improve | 84 |
| abstract_inverted_index.learned | 40 |
| abstract_inverted_index.letter, | 2 |
| abstract_inverted_index.matrix. | 69 |
| abstract_inverted_index.method. | 118 |
| abstract_inverted_index.present | 4 |
| abstract_inverted_index.project | 42 |
| abstract_inverted_index.results | 111 |
| abstract_inverted_index.samples | 63 |
| abstract_inverted_index.Finally, | 99 |
| abstract_inverted_index.adaptive | 6, 77 |
| abstract_inverted_index.efficacy | 114 |
| abstract_inverted_index.features | 45, 90 |
| abstract_inverted_index.learning | 10, 80 |
| abstract_inverted_index.negative | 94 |
| abstract_inverted_index.proposed | 117 |
| abstract_inverted_index.subspace | 9, 35 |
| abstract_inverted_index.transfer | 8 |
| abstract_inverted_index.weighted | 7, 78 |
| abstract_inverted_index.benchmark | 106 |
| abstract_inverted_index.eliminate | 22, 92 |
| abstract_inverted_index.extensive | 102 |
| abstract_inverted_index.features. | 98 |
| abstract_inverted_index.important | 89 |
| abstract_inverted_index.influence | 95 |
| abstract_inverted_index.redundant | 97 |
| abstract_inverted_index.strategy, | 81 |
| abstract_inverted_index.subspace. | 49 |
| abstract_inverted_index.databases, | 107 |
| abstract_inverted_index.databases. | 29 |
| abstract_inverted_index.projection | 36 |
| abstract_inverted_index.demonstrate | 112 |
| abstract_inverted_index.discrepancy | 24 |
| abstract_inverted_index.efficiently | 21 |
| abstract_inverted_index.experiments | 103 |
| abstract_inverted_index.recognition | 17 |
| abstract_inverted_index.represented | 59 |
| abstract_inverted_index.contribution | 87 |
| abstract_inverted_index.experimental | 110 |
| abstract_inverted_index.Specifically, | 30 |
| abstract_inverted_index.cross-database | 14, 44 |
| abstract_inverted_index.reconstruction | 68, 86 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.42378429 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |