A Novel Algorithm for Damaged Barcode Recognition Based on Deep Learning Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.12783/dtcse/cisnrc2019/33303
EAN/UPC barcode is one of the most used barcode system in commodity production, logistics and warehouse operation. However it is unavoidable that the barcode will be damaged during the process of commodity transportation and sale. In this paper, a barcode recognition algorithm based on deep learning is proposed for the recognition of damaged barcode. In our proposal, a convolutional neural network is designed for barcode recognition. The CNN based on deep learning is basically constructed of six convolution layers and three full connected layers. A hundred thousand barcode images with simulated degradation are generated as dataset to train the model, and a custom loss function is utilized to boost the recognition performance. The experiment result shows that recognition rate is up to 99.43%.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.12783/dtcse/cisnrc2019/33303
- OA Status
- diamond
- References
- 4
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2996309714
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2996309714Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.12783/dtcse/cisnrc2019/33303Digital Object Identifier
- Title
-
A Novel Algorithm for Damaged Barcode Recognition Based on Deep LearningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-09Full publication date if available
- Authors
-
Huijuan Liang, Song Chai, Chuanwu Zhang, Qirong Li, Jiayi Li, Haizhen WangList of authors in order
- Landing page
-
https://doi.org/10.12783/dtcse/cisnrc2019/33303Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.12783/dtcse/cisnrc2019/33303Direct OA link when available
- Concepts
-
Barcode, Computer science, Convolutional neural network, Convolution (computer science), Artificial intelligence, Deep learning, Process (computing), Commodity, Pattern recognition (psychology), Artificial neural network, Operating system, Market economy, EconomicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
4Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2996309714 |
|---|---|
| doi | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| ids.doi | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| ids.mag | 2996309714 |
| ids.openalex | https://openalex.org/W2996309714 |
| fwci | 0.0 |
| type | article |
| title | A Novel Algorithm for Damaged Barcode Recognition Based on Deep Learning |
| biblio.issue | cisnrc |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T13270 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9995999932289124 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | QR Code Applications and Technologies |
| topics[1].id | https://openalex.org/T12707 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.968999981880188 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Vehicle License Plate Recognition |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9666000008583069 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776841711 |
| concepts[0].level | 2 |
| concepts[0].score | 0.996161699295044 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q856 |
| concepts[0].display_name | Barcode |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7832802534103394 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C81363708 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6762942671775818 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[2].display_name | Convolutional neural network |
| concepts[3].id | https://openalex.org/C45347329 |
| concepts[3].level | 3 |
| concepts[3].score | 0.6735972762107849 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[3].display_name | Convolution (computer science) |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.6114820837974548 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C108583219 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5871654152870178 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[5].display_name | Deep learning |
| concepts[6].id | https://openalex.org/C98045186 |
| concepts[6].level | 2 |
| concepts[6].score | 0.566271960735321 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[6].display_name | Process (computing) |
| concepts[7].id | https://openalex.org/C2779439359 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4261324405670166 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q317088 |
| concepts[7].display_name | Commodity |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.40311312675476074 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C50644808 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3132322430610657 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[9].display_name | Artificial neural network |
| concepts[10].id | https://openalex.org/C111919701 |
| concepts[10].level | 1 |
| concepts[10].score | 0.06690508127212524 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[10].display_name | Operating system |
| concepts[11].id | https://openalex.org/C34447519 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q179522 |
| concepts[11].display_name | Market economy |
| concepts[12].id | https://openalex.org/C162324750 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[12].display_name | Economics |
| keywords[0].id | https://openalex.org/keywords/barcode |
| keywords[0].score | 0.996161699295044 |
| keywords[0].display_name | Barcode |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7832802534103394 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[2].score | 0.6762942671775818 |
| keywords[2].display_name | Convolutional neural network |
| keywords[3].id | https://openalex.org/keywords/convolution |
| keywords[3].score | 0.6735972762107849 |
| keywords[3].display_name | Convolution (computer science) |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.6114820837974548 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/deep-learning |
| keywords[5].score | 0.5871654152870178 |
| keywords[5].display_name | Deep learning |
| keywords[6].id | https://openalex.org/keywords/process |
| keywords[6].score | 0.566271960735321 |
| keywords[6].display_name | Process (computing) |
| keywords[7].id | https://openalex.org/keywords/commodity |
| keywords[7].score | 0.4261324405670166 |
| keywords[7].display_name | Commodity |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.40311312675476074 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[9].score | 0.3132322430610657 |
| keywords[9].display_name | Artificial neural network |
| keywords[10].id | https://openalex.org/keywords/operating-system |
| keywords[10].score | 0.06690508127212524 |
| keywords[10].display_name | Operating system |
| language | en |
| locations[0].id | doi:10.12783/dtcse/cisnrc2019/33303 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2764550102 |
| locations[0].source.issn | 2475-8841 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2475-8841 |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | DEStech Transactions on Computer Science and Engineering |
| locations[0].source.host_organization | https://openalex.org/P4322697008 |
| locations[0].source.host_organization_name | Destech Publications |
| locations[0].source.host_organization_lineage | https://openalex.org/P4322697008 |
| locations[0].source.host_organization_lineage_names | Destech Publications |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | DEStech Transactions on Computer Science and Engineering |
| locations[0].landing_page_url | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5045721883 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Huijuan Liang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | HUIJUAN LIANG |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5038584196 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Song Chai |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | SONG CHAI |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5070321797 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9025-4386 |
| authorships[2].author.display_name | Chuanwu Zhang |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | CHUANWU ZHANG |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5024857968 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-2875-8828 |
| authorships[3].author.display_name | Qirong Li |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | QIRONG LI |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5100446476 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-1934-2129 |
| authorships[4].author.display_name | Jiayi Li |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | JIAYI LI |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5101496773 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-5509-1355 |
| authorships[5].author.display_name | Haizhen Wang |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | HAIZHEN WANG |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Algorithm for Damaged Barcode Recognition Based on Deep Learning |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T13270 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9995999932289124 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | QR Code Applications and Technologies |
| related_works | https://openalex.org/W2256570403, https://openalex.org/W2074156223, https://openalex.org/W4226493464, https://openalex.org/W4312417841, https://openalex.org/W3193565141, https://openalex.org/W3133861977, https://openalex.org/W3167935049, https://openalex.org/W2964954556, https://openalex.org/W3029198973, https://openalex.org/W3019910406 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.12783/dtcse/cisnrc2019/33303 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764550102 |
| best_oa_location.source.issn | 2475-8841 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2475-8841 |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | DEStech Transactions on Computer Science and Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4322697008 |
| best_oa_location.source.host_organization_name | Destech Publications |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4322697008 |
| best_oa_location.source.host_organization_lineage_names | Destech Publications |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | DEStech Transactions on Computer Science and Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| primary_location.id | doi:10.12783/dtcse/cisnrc2019/33303 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2764550102 |
| primary_location.source.issn | 2475-8841 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2475-8841 |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | DEStech Transactions on Computer Science and Engineering |
| primary_location.source.host_organization | https://openalex.org/P4322697008 |
| primary_location.source.host_organization_name | Destech Publications |
| primary_location.source.host_organization_lineage | https://openalex.org/P4322697008 |
| primary_location.source.host_organization_lineage_names | Destech Publications |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | DEStech Transactions on Computer Science and Engineering |
| primary_location.landing_page_url | https://doi.org/10.12783/dtcse/cisnrc2019/33303 |
| publication_date | 2019-12-09 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2463044584, https://openalex.org/W2888990033, https://openalex.org/W2766206664, https://openalex.org/W2467139031 |
| referenced_works_count | 4 |
| abstract_inverted_index.A | 84 |
| abstract_inverted_index.a | 38, 57, 101 |
| abstract_inverted_index.In | 35, 54 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.be | 25 |
| abstract_inverted_index.in | 10 |
| abstract_inverted_index.is | 2, 19, 46, 61, 72, 105, 119 |
| abstract_inverted_index.it | 18 |
| abstract_inverted_index.of | 4, 30, 51, 75 |
| abstract_inverted_index.on | 43, 69 |
| abstract_inverted_index.to | 96, 107, 121 |
| abstract_inverted_index.up | 120 |
| abstract_inverted_index.CNN | 67 |
| abstract_inverted_index.The | 66, 112 |
| abstract_inverted_index.and | 14, 33, 79, 100 |
| abstract_inverted_index.are | 92 |
| abstract_inverted_index.for | 48, 63 |
| abstract_inverted_index.one | 3 |
| abstract_inverted_index.our | 55 |
| abstract_inverted_index.six | 76 |
| abstract_inverted_index.the | 5, 22, 28, 49, 98, 109 |
| abstract_inverted_index.deep | 44, 70 |
| abstract_inverted_index.full | 81 |
| abstract_inverted_index.loss | 103 |
| abstract_inverted_index.most | 6 |
| abstract_inverted_index.rate | 118 |
| abstract_inverted_index.that | 21, 116 |
| abstract_inverted_index.this | 36 |
| abstract_inverted_index.used | 7 |
| abstract_inverted_index.will | 24 |
| abstract_inverted_index.with | 89 |
| abstract_inverted_index.based | 42, 68 |
| abstract_inverted_index.boost | 108 |
| abstract_inverted_index.sale. | 34 |
| abstract_inverted_index.shows | 115 |
| abstract_inverted_index.three | 80 |
| abstract_inverted_index.train | 97 |
| abstract_inverted_index.custom | 102 |
| abstract_inverted_index.during | 27 |
| abstract_inverted_index.images | 88 |
| abstract_inverted_index.layers | 78 |
| abstract_inverted_index.model, | 99 |
| abstract_inverted_index.neural | 59 |
| abstract_inverted_index.paper, | 37 |
| abstract_inverted_index.result | 114 |
| abstract_inverted_index.system | 9 |
| abstract_inverted_index.99.43%. | 122 |
| abstract_inverted_index.EAN/UPC | 0 |
| abstract_inverted_index.However | 17 |
| abstract_inverted_index.barcode | 1, 8, 23, 39, 64, 87 |
| abstract_inverted_index.damaged | 26, 52 |
| abstract_inverted_index.dataset | 95 |
| abstract_inverted_index.hundred | 85 |
| abstract_inverted_index.layers. | 83 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.process | 29 |
| abstract_inverted_index.barcode. | 53 |
| abstract_inverted_index.designed | 62 |
| abstract_inverted_index.function | 104 |
| abstract_inverted_index.learning | 45, 71 |
| abstract_inverted_index.proposed | 47 |
| abstract_inverted_index.thousand | 86 |
| abstract_inverted_index.utilized | 106 |
| abstract_inverted_index.algorithm | 41 |
| abstract_inverted_index.basically | 73 |
| abstract_inverted_index.commodity | 11, 31 |
| abstract_inverted_index.connected | 82 |
| abstract_inverted_index.generated | 93 |
| abstract_inverted_index.logistics | 13 |
| abstract_inverted_index.proposal, | 56 |
| abstract_inverted_index.simulated | 90 |
| abstract_inverted_index.warehouse | 15 |
| abstract_inverted_index.experiment | 113 |
| abstract_inverted_index.operation. | 16 |
| abstract_inverted_index.constructed | 74 |
| abstract_inverted_index.convolution | 77 |
| abstract_inverted_index.degradation | 91 |
| abstract_inverted_index.production, | 12 |
| abstract_inverted_index.recognition | 40, 50, 110, 117 |
| abstract_inverted_index.unavoidable | 20 |
| abstract_inverted_index.performance. | 111 |
| abstract_inverted_index.recognition. | 65 |
| abstract_inverted_index.convolutional | 58 |
| abstract_inverted_index.transportation | 32 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/9 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Industry, innovation and infrastructure |
| citation_normalized_percentile.value | 0.24723784 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |