A Novel Alternating Joint Longitudinal Model for Post-ICU Hemoglobin Prediction Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2302.09110
Anemia is common in patients post-ICU discharge. However, which patients will develop or recover from anemia remains unclear. Prediction of anemia in this population is complicated by hospital readmissions, which can have substantial impacts on hemoglobin levels due to surgery, blood transfusions, or being a proxy for severe illness. We therefore introduce a novel Bayesian joint longitudinal model for hemoglobin over time, which includes specific parametric effects for hospital admission and discharge. These effects themselves depend on a patient's hemoglobin at time of hospitalization; therefore hemoglobin at a given time is a function of that patient's complete history of admissions and discharges up until that time. However, because the effects of an admission or discharge do not depend on themselves, the model remains well defined. We validate our model on a retrospective cohort of 6,876 patients from the Rochester Epidemiology Project using cross-validation, and find it accurately estimates hemoglobin and predicts anemic status and hospital readmission in the 30 days post-discharge with AUCs of .82 and .72, respectively.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2302.09110
- https://arxiv.org/pdf/2302.09110
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4321471964
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4321471964Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2302.09110Digital Object Identifier
- Title
-
A Novel Alternating Joint Longitudinal Model for Post-ICU Hemoglobin PredictionWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-02-17Full publication date if available
- Authors
-
Gabriel Demuth, Curtis B. Storlie, Matthew A. Warner, Daryl J. Kor, Phillip J. Shulte, Andrew C. HansonList of authors in order
- Landing page
-
https://arxiv.org/abs/2302.09110Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2302.09110Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2302.09110Direct OA link when available
- Concepts
-
Medicine, Anemia, Hemoglobin, Proxy (statistics), Cohort, Retrospective cohort study, Cohort study, Emergency medicine, Emergency department, Epidemiology, Longitudinal study, Intensive care medicine, Internal medicine, Computer science, Machine learning, Pathology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4321471964 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2302.09110 |
| ids.doi | https://doi.org/10.48550/arxiv.2302.09110 |
| ids.openalex | https://openalex.org/W4321471964 |
| fwci | |
| type | preprint |
| title | A Novel Alternating Joint Longitudinal Model for Post-ICU Hemoglobin Prediction |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10554 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9886000156402588 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2716 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Hemoglobinopathies and Related Disorders |
| topics[1].id | https://openalex.org/T10452 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9697999954223633 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2720 |
| topics[1].subfield.display_name | Hematology |
| topics[1].display_name | Iron Metabolism and Disorders |
| topics[2].id | https://openalex.org/T10693 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9466000199317932 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2704 |
| topics[2].subfield.display_name | Biochemistry |
| topics[2].display_name | Blood transfusion and management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C71924100 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7533149719238281 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[0].display_name | Medicine |
| concepts[1].id | https://openalex.org/C2778248108 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7489914894104004 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5445 |
| concepts[1].display_name | Anemia |
| concepts[2].id | https://openalex.org/C2778917026 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7008398175239563 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q43041 |
| concepts[2].display_name | Hemoglobin |
| concepts[3].id | https://openalex.org/C2780148112 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5518850684165955 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1432581 |
| concepts[3].display_name | Proxy (statistics) |
| concepts[4].id | https://openalex.org/C72563966 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5373998880386353 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[4].display_name | Cohort |
| concepts[5].id | https://openalex.org/C167135981 |
| concepts[5].level | 2 |
| concepts[5].score | 0.47463878989219666 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2146302 |
| concepts[5].display_name | Retrospective cohort study |
| concepts[6].id | https://openalex.org/C201903717 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46697306632995605 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1778788 |
| concepts[6].display_name | Cohort study |
| concepts[7].id | https://openalex.org/C194828623 |
| concepts[7].level | 1 |
| concepts[7].score | 0.45318078994750977 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2861470 |
| concepts[7].display_name | Emergency medicine |
| concepts[8].id | https://openalex.org/C2780724011 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4516914188861847 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1295316 |
| concepts[8].display_name | Emergency department |
| concepts[9].id | https://openalex.org/C107130276 |
| concepts[9].level | 2 |
| concepts[9].score | 0.427731454372406 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q133805 |
| concepts[9].display_name | Epidemiology |
| concepts[10].id | https://openalex.org/C2777895361 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4125227630138397 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1758614 |
| concepts[10].display_name | Longitudinal study |
| concepts[11].id | https://openalex.org/C177713679 |
| concepts[11].level | 1 |
| concepts[11].score | 0.398243248462677 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q679690 |
| concepts[11].display_name | Intensive care medicine |
| concepts[12].id | https://openalex.org/C126322002 |
| concepts[12].level | 1 |
| concepts[12].score | 0.2525373697280884 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[12].display_name | Internal medicine |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.11482447385787964 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C119857082 |
| concepts[14].level | 1 |
| concepts[14].score | 0.06333571672439575 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[14].display_name | Machine learning |
| concepts[15].id | https://openalex.org/C142724271 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7208 |
| concepts[15].display_name | Pathology |
| concepts[16].id | https://openalex.org/C118552586 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[16].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/medicine |
| keywords[0].score | 0.7533149719238281 |
| keywords[0].display_name | Medicine |
| keywords[1].id | https://openalex.org/keywords/anemia |
| keywords[1].score | 0.7489914894104004 |
| keywords[1].display_name | Anemia |
| keywords[2].id | https://openalex.org/keywords/hemoglobin |
| keywords[2].score | 0.7008398175239563 |
| keywords[2].display_name | Hemoglobin |
| keywords[3].id | https://openalex.org/keywords/proxy |
| keywords[3].score | 0.5518850684165955 |
| keywords[3].display_name | Proxy (statistics) |
| keywords[4].id | https://openalex.org/keywords/cohort |
| keywords[4].score | 0.5373998880386353 |
| keywords[4].display_name | Cohort |
| keywords[5].id | https://openalex.org/keywords/retrospective-cohort-study |
| keywords[5].score | 0.47463878989219666 |
| keywords[5].display_name | Retrospective cohort study |
| keywords[6].id | https://openalex.org/keywords/cohort-study |
| keywords[6].score | 0.46697306632995605 |
| keywords[6].display_name | Cohort study |
| keywords[7].id | https://openalex.org/keywords/emergency-medicine |
| keywords[7].score | 0.45318078994750977 |
| keywords[7].display_name | Emergency medicine |
| keywords[8].id | https://openalex.org/keywords/emergency-department |
| keywords[8].score | 0.4516914188861847 |
| keywords[8].display_name | Emergency department |
| keywords[9].id | https://openalex.org/keywords/epidemiology |
| keywords[9].score | 0.427731454372406 |
| keywords[9].display_name | Epidemiology |
| keywords[10].id | https://openalex.org/keywords/longitudinal-study |
| keywords[10].score | 0.4125227630138397 |
| keywords[10].display_name | Longitudinal study |
| keywords[11].id | https://openalex.org/keywords/intensive-care-medicine |
| keywords[11].score | 0.398243248462677 |
| keywords[11].display_name | Intensive care medicine |
| keywords[12].id | https://openalex.org/keywords/internal-medicine |
| keywords[12].score | 0.2525373697280884 |
| keywords[12].display_name | Internal medicine |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.11482447385787964 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/machine-learning |
| keywords[14].score | 0.06333571672439575 |
| keywords[14].display_name | Machine learning |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2302.09110 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2302.09110 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2302.09110 |
| locations[1].id | doi:10.48550/arxiv.2302.09110 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2302.09110 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5037247008 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-3571-4559 |
| authorships[0].author.display_name | Gabriel Demuth |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Demuth, Gabriel |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5079013017 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2464-6864 |
| authorships[1].author.display_name | Curtis B. Storlie |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Storlie, Curtis |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5028980008 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6625-8755 |
| authorships[2].author.display_name | Matthew A. Warner |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Warner, Matthew A. |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103192518 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9110-1648 |
| authorships[3].author.display_name | Daryl J. Kor |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Kor, Daryl J. |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5067825698 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Phillip J. Shulte |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shulte, Phillip J. |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5112096064 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Andrew C. Hanson |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hanson, Andrew C. |
| authorships[5].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2302.09110 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2023-02-22T00:00:00 |
| display_name | A Novel Alternating Joint Longitudinal Model for Post-ICU Hemoglobin Prediction |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10554 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9886000156402588 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2716 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Hemoglobinopathies and Related Disorders |
| related_works | https://openalex.org/W4384345078, https://openalex.org/W2791973335, https://openalex.org/W2384709362, https://openalex.org/W2079855793, https://openalex.org/W2769982907, https://openalex.org/W4387371723, https://openalex.org/W2038659832, https://openalex.org/W4252242999, https://openalex.org/W2776564670, https://openalex.org/W4392029063 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2302.09110 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2302.09110 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2302.09110 |
| primary_location.id | pmh:oai:arXiv.org:2302.09110 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2302.09110 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2302.09110 |
| publication_date | 2023-02-17 |
| publication_year | 2023 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 44, 52, 77, 87, 91, 130 |
| abstract_inverted_index.30 | 158 |
| abstract_inverted_index.We | 49, 125 |
| abstract_inverted_index.an | 111 |
| abstract_inverted_index.at | 80, 86 |
| abstract_inverted_index.by | 26 |
| abstract_inverted_index.do | 115 |
| abstract_inverted_index.in | 3, 21, 156 |
| abstract_inverted_index.is | 1, 24, 90 |
| abstract_inverted_index.it | 145 |
| abstract_inverted_index.of | 19, 82, 93, 98, 110, 133, 163 |
| abstract_inverted_index.on | 34, 76, 118, 129 |
| abstract_inverted_index.or | 12, 42, 113 |
| abstract_inverted_index.to | 38 |
| abstract_inverted_index.up | 102 |
| abstract_inverted_index..82 | 164 |
| abstract_inverted_index.and | 70, 100, 143, 149, 153, 165 |
| abstract_inverted_index.can | 30 |
| abstract_inverted_index.due | 37 |
| abstract_inverted_index.for | 46, 58, 67 |
| abstract_inverted_index.not | 116 |
| abstract_inverted_index.our | 127 |
| abstract_inverted_index.the | 108, 120, 137, 157 |
| abstract_inverted_index..72, | 166 |
| abstract_inverted_index.AUCs | 162 |
| abstract_inverted_index.days | 159 |
| abstract_inverted_index.find | 144 |
| abstract_inverted_index.from | 14, 136 |
| abstract_inverted_index.have | 31 |
| abstract_inverted_index.over | 60 |
| abstract_inverted_index.that | 94, 104 |
| abstract_inverted_index.this | 22 |
| abstract_inverted_index.time | 81, 89 |
| abstract_inverted_index.well | 123 |
| abstract_inverted_index.will | 10 |
| abstract_inverted_index.with | 161 |
| abstract_inverted_index.6,876 | 134 |
| abstract_inverted_index.These | 72 |
| abstract_inverted_index.being | 43 |
| abstract_inverted_index.blood | 40 |
| abstract_inverted_index.given | 88 |
| abstract_inverted_index.joint | 55 |
| abstract_inverted_index.model | 57, 121, 128 |
| abstract_inverted_index.novel | 53 |
| abstract_inverted_index.proxy | 45 |
| abstract_inverted_index.time, | 61 |
| abstract_inverted_index.time. | 105 |
| abstract_inverted_index.until | 103 |
| abstract_inverted_index.using | 141 |
| abstract_inverted_index.which | 8, 29, 62 |
| abstract_inverted_index.Anemia | 0 |
| abstract_inverted_index.anemia | 15, 20 |
| abstract_inverted_index.anemic | 151 |
| abstract_inverted_index.cohort | 132 |
| abstract_inverted_index.common | 2 |
| abstract_inverted_index.depend | 75, 117 |
| abstract_inverted_index.levels | 36 |
| abstract_inverted_index.severe | 47 |
| abstract_inverted_index.status | 152 |
| abstract_inverted_index.Project | 140 |
| abstract_inverted_index.because | 107 |
| abstract_inverted_index.develop | 11 |
| abstract_inverted_index.effects | 66, 73, 109 |
| abstract_inverted_index.history | 97 |
| abstract_inverted_index.impacts | 33 |
| abstract_inverted_index.recover | 13 |
| abstract_inverted_index.remains | 16, 122 |
| abstract_inverted_index.Bayesian | 54 |
| abstract_inverted_index.However, | 7, 106 |
| abstract_inverted_index.complete | 96 |
| abstract_inverted_index.defined. | 124 |
| abstract_inverted_index.function | 92 |
| abstract_inverted_index.hospital | 27, 68, 154 |
| abstract_inverted_index.illness. | 48 |
| abstract_inverted_index.includes | 63 |
| abstract_inverted_index.patients | 4, 9, 135 |
| abstract_inverted_index.post-ICU | 5 |
| abstract_inverted_index.predicts | 150 |
| abstract_inverted_index.specific | 64 |
| abstract_inverted_index.surgery, | 39 |
| abstract_inverted_index.unclear. | 17 |
| abstract_inverted_index.validate | 126 |
| abstract_inverted_index.Rochester | 138 |
| abstract_inverted_index.admission | 69, 112 |
| abstract_inverted_index.discharge | 114 |
| abstract_inverted_index.estimates | 147 |
| abstract_inverted_index.introduce | 51 |
| abstract_inverted_index.patient's | 78, 95 |
| abstract_inverted_index.therefore | 50, 84 |
| abstract_inverted_index.Prediction | 18 |
| abstract_inverted_index.accurately | 146 |
| abstract_inverted_index.admissions | 99 |
| abstract_inverted_index.discharge. | 6, 71 |
| abstract_inverted_index.discharges | 101 |
| abstract_inverted_index.hemoglobin | 35, 59, 79, 85, 148 |
| abstract_inverted_index.parametric | 65 |
| abstract_inverted_index.population | 23 |
| abstract_inverted_index.themselves | 74 |
| abstract_inverted_index.complicated | 25 |
| abstract_inverted_index.readmission | 155 |
| abstract_inverted_index.substantial | 32 |
| abstract_inverted_index.themselves, | 119 |
| abstract_inverted_index.Epidemiology | 139 |
| abstract_inverted_index.longitudinal | 56 |
| abstract_inverted_index.readmissions, | 28 |
| abstract_inverted_index.respectively. | 167 |
| abstract_inverted_index.retrospective | 131 |
| abstract_inverted_index.transfusions, | 41 |
| abstract_inverted_index.post-discharge | 160 |
| abstract_inverted_index.hospitalization; | 83 |
| abstract_inverted_index.cross-validation, | 142 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.8500000238418579 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile |