A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1080/24705314.2021.2018840
In this paper, a novel deterioration and damage identification procedure (DIP) is presented and applied to building models. The challenge associated with applications on these types of structures is related to the strong correlation of responses, an issue that gets further complicated when coping with real ambient vibrations with high levels of noise. Thus, a DIP is designed utilizing low-cost ambient vibrations to analyze the acceleration responses using the Stockwell transform (ST) to generate spectrograms. Subsequently, the ST outputs become the input of two series of Convolutional Neural Networks (CNNs) established for identifying deterioration and damage on the building models. To the best of our knowledge, this is the first time that both damage and deterioration are evaluated on building models through a combination of ST and CNN with high accuracy.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1080/24705314.2021.2018840
- OA Status
- green
- Cited By
- 13
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3211689486
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3211689486Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1080/24705314.2021.2018840Digital Object Identifier
- Title
-
A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural networkWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-03-13Full publication date if available
- Authors
-
Vahidreza Gharehbaghi, Hashem Kalbkhani, Ehsan Noroozinejad Farsangi, T.Y. Yang, Andy Nguyễn, Seyedali Mirjalili, Christian Málaga‐ChuquitaypeList of authors in order
- Landing page
-
https://doi.org/10.1080/24705314.2021.2018840Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://research-repository.griffith.edu.au/bitstreams/dcc548e2-dea0-4c04-9564-7959b55f8aae/downloadDirect OA link when available
- Concepts
-
Convolutional neural network, Identification (biology), Artificial intelligence, Computer science, Pattern recognition (psychology), Artificial neural network, Deep learning, Biology, BotanyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
13Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 5, 2023: 3, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3211689486 |
|---|---|
| doi | https://doi.org/10.1080/24705314.2021.2018840 |
| ids.doi | https://doi.org/10.1080/24705314.2021.2018840 |
| ids.mag | 3211689486 |
| ids.openalex | https://openalex.org/W3211689486 |
| fwci | 1.87799652 |
| type | article |
| title | A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network |
| biblio.issue | 2 |
| biblio.volume | 7 |
| biblio.last_page | 150 |
| biblio.first_page | 136 |
| topics[0].id | https://openalex.org/T11606 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2205 |
| topics[0].subfield.display_name | Civil and Structural Engineering |
| topics[0].display_name | Infrastructure Maintenance and Monitoring |
| topics[1].id | https://openalex.org/T10534 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9997000098228455 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Health Monitoring Techniques |
| topics[2].id | https://openalex.org/T11220 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9901999831199646 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2205 |
| topics[2].subfield.display_name | Civil and Structural Engineering |
| topics[2].display_name | Water Systems and Optimization |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81363708 |
| concepts[0].level | 2 |
| concepts[0].score | 0.841999888420105 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q17084460 |
| concepts[0].display_name | Convolutional neural network |
| concepts[1].id | https://openalex.org/C116834253 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7192253470420837 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[1].display_name | Identification (biology) |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6331188082695007 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5356276631355286 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4611743688583374 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C50644808 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4376554489135742 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[5].display_name | Artificial neural network |
| concepts[6].id | https://openalex.org/C108583219 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4150896370410919 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[6].display_name | Deep learning |
| concepts[7].id | https://openalex.org/C86803240 |
| concepts[7].level | 0 |
| concepts[7].score | 0.04738771915435791 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[7].display_name | Biology |
| concepts[8].id | https://openalex.org/C59822182 |
| concepts[8].level | 1 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[8].display_name | Botany |
| keywords[0].id | https://openalex.org/keywords/convolutional-neural-network |
| keywords[0].score | 0.841999888420105 |
| keywords[0].display_name | Convolutional neural network |
| keywords[1].id | https://openalex.org/keywords/identification |
| keywords[1].score | 0.7192253470420837 |
| keywords[1].display_name | Identification (biology) |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6331188082695007 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5356276631355286 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.4611743688583374 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[5].score | 0.4376554489135742 |
| keywords[5].display_name | Artificial neural network |
| keywords[6].id | https://openalex.org/keywords/deep-learning |
| keywords[6].score | 0.4150896370410919 |
| keywords[6].display_name | Deep learning |
| keywords[7].id | https://openalex.org/keywords/biology |
| keywords[7].score | 0.04738771915435791 |
| keywords[7].display_name | Biology |
| language | en |
| locations[0].id | doi:10.1080/24705314.2021.2018840 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210172103 |
| locations[0].source.issn | 2470-5314, 2470-5322 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 2470-5314 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Structural Integrity and Maintenance |
| locations[0].source.host_organization | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_name | Taylor & Francis |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320547 |
| locations[0].source.host_organization_lineage_names | Taylor & Francis |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Structural Integrity and Maintenance |
| locations[0].landing_page_url | https://doi.org/10.1080/24705314.2021.2018840 |
| locations[1].id | pmh:oai:research-repository.griffith.edu.au:10072/415929 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402548 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| locations[1].source.host_organization | https://openalex.org/I11701301 |
| locations[1].source.host_organization_name | Griffith University |
| locations[1].source.host_organization_lineage | https://openalex.org/I11701301 |
| locations[1].license | |
| locations[1].pdf_url | https://research-repository.griffith.edu.au/bitstreams/dcc548e2-dea0-4c04-9564-7959b55f8aae/download |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Journal article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://hdl.handle.net/10072/415929 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5009611594 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6831-313X |
| authorships[0].author.display_name | Vahidreza Gharehbaghi |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Civil Engineering and Surveying, University of Southern Queensland, Springfield Campus, Springfield, QLD, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I185523456 |
| authorships[0].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | University of Southern Queensland |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Vahid Reza Gharehbaghi |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Civil Engineering and Surveying, University of Southern Queensland, Springfield Campus, Springfield, QLD, Australia |
| authorships[1].author.id | https://openalex.org/A5079689409 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2431-4920 |
| authorships[1].author.display_name | Hashem Kalbkhani |
| authorships[1].countries | GB, IR |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143150842 |
| authorships[1].affiliations[0].raw_affiliation_string | /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I183263030 |
| authorships[1].affiliations[1].raw_affiliation_string | /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I47508984 |
| authorships[1].affiliations[2].raw_affiliation_string | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK |
| authorships[1].affiliations[3].institution_ids | https://openalex.org/I181744264 |
| authorships[1].affiliations[3].raw_affiliation_string | Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| authorships[1].institutions[0].id | https://openalex.org/I47508984 |
| authorships[1].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Imperial College London |
| authorships[1].institutions[1].id | https://openalex.org/I183263030 |
| authorships[1].institutions[1].ror | https://ror.org/0451xdy64 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I183263030 |
| authorships[1].institutions[1].country_code | IR |
| authorships[1].institutions[1].display_name | Graduate University of Advanced Technology |
| authorships[1].institutions[2].id | https://openalex.org/I181744264 |
| authorships[1].institutions[2].ror | https://ror.org/05hsgex59 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I181744264 |
| authorships[1].institutions[2].country_code | IR |
| authorships[1].institutions[2].display_name | Kharazmi University |
| authorships[1].institutions[3].id | https://openalex.org/I143150842 |
| authorships[1].institutions[3].ror | https://ror.org/02v319z25 |
| authorships[1].institutions[3].type | education |
| authorships[1].institutions[3].lineage | https://openalex.org/I143150842 |
| authorships[1].institutions[3].country_code | IR |
| authorships[1].institutions[3].display_name | Urmia University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hashem Kalbkhani |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK, /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran, /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran, Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| authorships[2].author.id | https://openalex.org/A5040507648 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2790-526X |
| authorships[2].author.display_name | Ehsan Noroozinejad Farsangi |
| authorships[2].countries | GB, IR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I183263030 |
| authorships[2].affiliations[0].raw_affiliation_string | /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I181744264 |
| authorships[2].affiliations[1].raw_affiliation_string | Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I143150842 |
| authorships[2].affiliations[2].raw_affiliation_string | /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran |
| authorships[2].affiliations[3].institution_ids | https://openalex.org/I47508984 |
| authorships[2].affiliations[3].raw_affiliation_string | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK |
| authorships[2].institutions[0].id | https://openalex.org/I47508984 |
| authorships[2].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Imperial College London |
| authorships[2].institutions[1].id | https://openalex.org/I183263030 |
| authorships[2].institutions[1].ror | https://ror.org/0451xdy64 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I183263030 |
| authorships[2].institutions[1].country_code | IR |
| authorships[2].institutions[1].display_name | Graduate University of Advanced Technology |
| authorships[2].institutions[2].id | https://openalex.org/I181744264 |
| authorships[2].institutions[2].ror | https://ror.org/05hsgex59 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I181744264 |
| authorships[2].institutions[2].country_code | IR |
| authorships[2].institutions[2].display_name | Kharazmi University |
| authorships[2].institutions[3].id | https://openalex.org/I143150842 |
| authorships[2].institutions[3].ror | https://ror.org/02v319z25 |
| authorships[2].institutions[3].type | education |
| authorships[2].institutions[3].lineage | https://openalex.org/I143150842 |
| authorships[2].institutions[3].country_code | IR |
| authorships[2].institutions[3].display_name | Urmia University of Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ehsan Noroozinejad Farsangi |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK, /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran, /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran, Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| authorships[3].author.id | https://openalex.org/A5083574925 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-5123-9634 |
| authorships[3].author.display_name | T.Y. Yang |
| authorships[3].countries | CA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I141945490 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Civil Engineering, University of British Columbia, Vancouver, Canada |
| authorships[3].institutions[0].id | https://openalex.org/I141945490 |
| authorships[3].institutions[0].ror | https://ror.org/03rmrcq20 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I141945490, https://openalex.org/I4210128534, https://openalex.org/I4210135497, https://openalex.org/I4387154919 |
| authorships[3].institutions[0].country_code | CA |
| authorships[3].institutions[0].display_name | University of British Columbia |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | T.Y. Yang |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Civil Engineering, University of British Columbia, Vancouver, Canada |
| authorships[4].author.id | https://openalex.org/A5030571478 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-8739-8207 |
| authorships[4].author.display_name | Andy Nguyễn |
| authorships[4].countries | AU |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I185523456 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Civil Engineering and Surveying, University of Southern Queensland, Springfield Campus, Springfield, QLD, Australia |
| authorships[4].institutions[0].id | https://openalex.org/I185523456 |
| authorships[4].institutions[0].ror | https://ror.org/04sjbnx57 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I185523456 |
| authorships[4].institutions[0].country_code | AU |
| authorships[4].institutions[0].display_name | University of Southern Queensland |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Andy Nguyen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Civil Engineering and Surveying, University of Southern Queensland, Springfield Campus, Springfield, QLD, Australia |
| authorships[5].author.id | https://openalex.org/A5091500375 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1443-9458 |
| authorships[5].author.display_name | Seyedali Mirjalili |
| authorships[5].countries | AU, KR |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I193775966 |
| authorships[5].affiliations[0].raw_affiliation_string | Yonsei Frontier Lab, Yonsei University, Seoul, Korea |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I4210142395 |
| authorships[5].affiliations[1].raw_affiliation_string | Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia |
| authorships[5].institutions[0].id | https://openalex.org/I4210142395 |
| authorships[5].institutions[0].ror | https://ror.org/0351xae06 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210142395 |
| authorships[5].institutions[0].country_code | AU |
| authorships[5].institutions[0].display_name | Torrens University Australia |
| authorships[5].institutions[1].id | https://openalex.org/I193775966 |
| authorships[5].institutions[1].ror | https://ror.org/01wjejq96 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I193775966 |
| authorships[5].institutions[1].country_code | KR |
| authorships[5].institutions[1].display_name | Yonsei University |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Seyedali Mirjalili |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Center for Artificial Intelligence Research and Optimization, Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia, Yonsei Frontier Lab, Yonsei University, Seoul, Korea |
| authorships[6].author.id | https://openalex.org/A5005602165 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-2538-7374 |
| authorships[6].author.display_name | Christian Málaga‐Chuquitaype |
| authorships[6].countries | GB, IR |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I143150842 |
| authorships[6].affiliations[0].raw_affiliation_string | /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I47508984 |
| authorships[6].affiliations[1].raw_affiliation_string | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I181744264 |
| authorships[6].affiliations[2].raw_affiliation_string | Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| authorships[6].affiliations[3].institution_ids | https://openalex.org/I183263030 |
| authorships[6].affiliations[3].raw_affiliation_string | /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran |
| authorships[6].institutions[0].id | https://openalex.org/I47508984 |
| authorships[6].institutions[0].ror | https://ror.org/041kmwe10 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I47508984 |
| authorships[6].institutions[0].country_code | GB |
| authorships[6].institutions[0].display_name | Imperial College London |
| authorships[6].institutions[1].id | https://openalex.org/I183263030 |
| authorships[6].institutions[1].ror | https://ror.org/0451xdy64 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I183263030 |
| authorships[6].institutions[1].country_code | IR |
| authorships[6].institutions[1].display_name | Graduate University of Advanced Technology |
| authorships[6].institutions[2].id | https://openalex.org/I181744264 |
| authorships[6].institutions[2].ror | https://ror.org/05hsgex59 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I181744264 |
| authorships[6].institutions[2].country_code | IR |
| authorships[6].institutions[2].display_name | Kharazmi University |
| authorships[6].institutions[3].id | https://openalex.org/I143150842 |
| authorships[6].institutions[3].ror | https://ror.org/02v319z25 |
| authorships[6].institutions[3].type | education |
| authorships[6].institutions[3].lineage | https://openalex.org/I143150842 |
| authorships[6].institutions[3].country_code | IR |
| authorships[6].institutions[3].display_name | Urmia University of Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Christian Málaga-Chuquitaype |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | /Professor, Department of Civil and Environmental Engineering, Imperial College London, UK, /Professor, Department of Electrical Engineering, Urmia University of Technology, Urmia, Iran, /Professor, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran, Research Scholar, Kharazmi University, Faculty of Civil Engineering, Tehran, Iran |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://research-repository.griffith.edu.au/bitstreams/dcc548e2-dea0-4c04-9564-7959b55f8aae/download |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A novel approach for deterioration and damage identification in building structures based on Stockwell-Transform and deep convolutional neural network |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11606 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2205 |
| primary_topic.subfield.display_name | Civil and Structural Engineering |
| primary_topic.display_name | Infrastructure Maintenance and Monitoring |
| related_works | https://openalex.org/W2731899572, https://openalex.org/W3133861977, https://openalex.org/W4200173597, https://openalex.org/W3116150086, https://openalex.org/W3156786002, https://openalex.org/W2738221750, https://openalex.org/W2732542196, https://openalex.org/W564581980, https://openalex.org/W3186111093, https://openalex.org/W4214561993 |
| cited_by_count | 13 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 5 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:research-repository.griffith.edu.au:10072/415929 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402548 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Griffith Research Online (Griffith University, Queensland, Australia) |
| best_oa_location.source.host_organization | https://openalex.org/I11701301 |
| best_oa_location.source.host_organization_name | Griffith University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I11701301 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://research-repository.griffith.edu.au/bitstreams/dcc548e2-dea0-4c04-9564-7959b55f8aae/download |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Journal article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://hdl.handle.net/10072/415929 |
| primary_location.id | doi:10.1080/24705314.2021.2018840 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210172103 |
| primary_location.source.issn | 2470-5314, 2470-5322 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 2470-5314 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Structural Integrity and Maintenance |
| primary_location.source.host_organization | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_name | Taylor & Francis |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320547 |
| primary_location.source.host_organization_lineage_names | Taylor & Francis |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Structural Integrity and Maintenance |
| primary_location.landing_page_url | https://doi.org/10.1080/24705314.2021.2018840 |
| publication_date | 2022-03-13 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2556345765, https://openalex.org/W3016123475, https://openalex.org/W2791965385, https://openalex.org/W2589870259, https://openalex.org/W3000144322, https://openalex.org/W3112524304, https://openalex.org/W3007094498, https://openalex.org/W2898494868, https://openalex.org/W2620575971, https://openalex.org/W2989188324, https://openalex.org/W2621374544, https://openalex.org/W2800346298, https://openalex.org/W2919115771, https://openalex.org/W3004052770, https://openalex.org/W2800233837, https://openalex.org/W2977323704, https://openalex.org/W2884355698, https://openalex.org/W2891805748, https://openalex.org/W2136245252, https://openalex.org/W2214144394, https://openalex.org/W2987390186, https://openalex.org/W2994827950, https://openalex.org/W2143207123, https://openalex.org/W3009080359, https://openalex.org/W1553437616, https://openalex.org/W2163116118, https://openalex.org/W2113098833, https://openalex.org/W2511065100, https://openalex.org/W2765982206, https://openalex.org/W2795768041, https://openalex.org/W2393321673, https://openalex.org/W3013332082, https://openalex.org/W2942056403 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 3, 54, 122 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.ST | 77, 125 |
| abstract_inverted_index.To | 100 |
| abstract_inverted_index.an | 36 |
| abstract_inverted_index.is | 11, 28, 56, 107 |
| abstract_inverted_index.of | 26, 34, 51, 82, 85, 103, 124 |
| abstract_inverted_index.on | 23, 96, 118 |
| abstract_inverted_index.to | 15, 30, 62, 72 |
| abstract_inverted_index.CNN | 127 |
| abstract_inverted_index.DIP | 55 |
| abstract_inverted_index.The | 18 |
| abstract_inverted_index.and | 6, 13, 94, 114, 126 |
| abstract_inverted_index.are | 116 |
| abstract_inverted_index.for | 91 |
| abstract_inverted_index.our | 104 |
| abstract_inverted_index.the | 31, 64, 68, 76, 80, 97, 101, 108 |
| abstract_inverted_index.two | 83 |
| abstract_inverted_index.(ST) | 71 |
| abstract_inverted_index.best | 102 |
| abstract_inverted_index.both | 112 |
| abstract_inverted_index.gets | 39 |
| abstract_inverted_index.high | 49, 129 |
| abstract_inverted_index.real | 45 |
| abstract_inverted_index.that | 38, 111 |
| abstract_inverted_index.this | 1, 106 |
| abstract_inverted_index.time | 110 |
| abstract_inverted_index.when | 42 |
| abstract_inverted_index.with | 21, 44, 48, 128 |
| abstract_inverted_index.(DIP) | 10 |
| abstract_inverted_index.Thus, | 53 |
| abstract_inverted_index.first | 109 |
| abstract_inverted_index.input | 81 |
| abstract_inverted_index.issue | 37 |
| abstract_inverted_index.novel | 4 |
| abstract_inverted_index.these | 24 |
| abstract_inverted_index.types | 25 |
| abstract_inverted_index.using | 67 |
| abstract_inverted_index.(CNNs) | 89 |
| abstract_inverted_index.Neural | 87 |
| abstract_inverted_index.become | 79 |
| abstract_inverted_index.coping | 43 |
| abstract_inverted_index.damage | 7, 95, 113 |
| abstract_inverted_index.levels | 50 |
| abstract_inverted_index.models | 120 |
| abstract_inverted_index.noise. | 52 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.series | 84 |
| abstract_inverted_index.strong | 32 |
| abstract_inverted_index.ambient | 46, 60 |
| abstract_inverted_index.analyze | 63 |
| abstract_inverted_index.applied | 14 |
| abstract_inverted_index.further | 40 |
| abstract_inverted_index.models. | 17, 99 |
| abstract_inverted_index.outputs | 78 |
| abstract_inverted_index.related | 29 |
| abstract_inverted_index.through | 121 |
| abstract_inverted_index.Networks | 88 |
| abstract_inverted_index.building | 16, 98, 119 |
| abstract_inverted_index.designed | 57 |
| abstract_inverted_index.generate | 73 |
| abstract_inverted_index.low-cost | 59 |
| abstract_inverted_index.Stockwell | 69 |
| abstract_inverted_index.accuracy. | 130 |
| abstract_inverted_index.challenge | 19 |
| abstract_inverted_index.evaluated | 117 |
| abstract_inverted_index.presented | 12 |
| abstract_inverted_index.procedure | 9 |
| abstract_inverted_index.responses | 66 |
| abstract_inverted_index.transform | 70 |
| abstract_inverted_index.utilizing | 58 |
| abstract_inverted_index.associated | 20 |
| abstract_inverted_index.knowledge, | 105 |
| abstract_inverted_index.responses, | 35 |
| abstract_inverted_index.structures | 27 |
| abstract_inverted_index.vibrations | 47, 61 |
| abstract_inverted_index.combination | 123 |
| abstract_inverted_index.complicated | 41 |
| abstract_inverted_index.correlation | 33 |
| abstract_inverted_index.established | 90 |
| abstract_inverted_index.identifying | 92 |
| abstract_inverted_index.acceleration | 65 |
| abstract_inverted_index.applications | 22 |
| abstract_inverted_index.Convolutional | 86 |
| abstract_inverted_index.Subsequently, | 75 |
| abstract_inverted_index.deterioration | 5, 93, 115 |
| abstract_inverted_index.spectrograms. | 74 |
| abstract_inverted_index.identification | 8 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.8199999928474426 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.79621834 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |