A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint Detection Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.03684
This paper presents an autonomous tomato-harvesting system built around a hybrid robotic gripper that combines six soft auxetic fingers with a rigid exoskeleton and a latex basket to achieve gentle, cage-like grasping. The gripper is driven by a servo-actuated Scotch--yoke mechanism, and includes separator leaves that form a conical frustum for fruit isolation, with an integrated micro-servo cutter for pedicel cutting. For perception, an RGB--D camera and a Detectron2-based pipeline perform semantic segmentation of ripe/unripe tomatoes and keypoint localization of the pedicel and fruit center under occlusion and variable illumination. An analytical model derived using the principle of virtual work relates servo torque to grasp force, enabling design-level reasoning about actuation requirements. During execution, closed-loop grasp-force regulation is achieved using a proportional--integral--derivative controller with feedback from force-sensitive resistors mounted on selected fingers to prevent slip and bruising. Motion execution is supported by Particle Swarm Optimization (PSO)--based trajectory planning for a 5-DOF manipulator. Experiments demonstrate complete picking cycles (approach, separation, cutting, grasping, transport, release) with an average cycle time of 24.34~s and an overall success rate of approximately 80\%, while maintaining low grasp forces (0.20--0.50~N). These results validate the proposed hybrid gripper and integrated vision--control pipeline for reliable harvesting in cluttered environments.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.03684
- https://arxiv.org/pdf/2512.03684
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417031036
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417031036Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.03684Digital Object Identifier
- Title
-
A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint DetectionWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-03Full publication date if available
- Authors
-
Mahendra Kumar Gohil, Yusuke MaedaList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.03684Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.03684Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.03684Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417031036 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.03684 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.03684 |
| ids.openalex | https://openalex.org/W4417031036 |
| fwci | |
| type | preprint |
| title | A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint Detection |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.03684 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.03684 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.03684 |
| locations[1].id | doi:10.48550/arxiv.2512.03684 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.03684 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5008126918 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6041-5895 |
| authorships[0].author.display_name | Mahendra Kumar Gohil |
| authorships[0].author_position | last |
| authorships[0].raw_author_name | Gohil, Mahendra Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5069838421 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9654-6117 |
| authorships[1].author.display_name | Yusuke Maeda |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Maeda, Yusuke |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.03684 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-05T00:00:00 |
| display_name | A Novel Approach to Tomato Harvesting Using a Hybrid Gripper with Semantic Segmentation and Keypoint Detection |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-05T23:25:22.460635 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.03684 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.03684 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.03684 |
| primary_location.id | pmh:oai:arXiv.org:2512.03684 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.03684 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.03684 |
| publication_date | 2025-12-03 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 9, 20, 24, 37, 47, 67, 120, 149 |
| abstract_inverted_index.An | 90 |
| abstract_inverted_index.an | 3, 54, 63, 164, 171 |
| abstract_inverted_index.by | 36, 141 |
| abstract_inverted_index.in | 198 |
| abstract_inverted_index.is | 34, 117, 139 |
| abstract_inverted_index.of | 73, 79, 97, 168, 175 |
| abstract_inverted_index.on | 129 |
| abstract_inverted_index.to | 27, 103, 132 |
| abstract_inverted_index.For | 61 |
| abstract_inverted_index.The | 32 |
| abstract_inverted_index.and | 23, 41, 66, 76, 82, 87, 135, 170, 191 |
| abstract_inverted_index.for | 50, 58, 148, 195 |
| abstract_inverted_index.low | 180 |
| abstract_inverted_index.six | 15 |
| abstract_inverted_index.the | 80, 95, 187 |
| abstract_inverted_index.This | 0 |
| abstract_inverted_index.form | 46 |
| abstract_inverted_index.from | 125 |
| abstract_inverted_index.rate | 174 |
| abstract_inverted_index.slip | 134 |
| abstract_inverted_index.soft | 16 |
| abstract_inverted_index.that | 13, 45 |
| abstract_inverted_index.time | 167 |
| abstract_inverted_index.with | 19, 53, 123, 163 |
| abstract_inverted_index.work | 99 |
| abstract_inverted_index.5-DOF | 150 |
| abstract_inverted_index.80\%, | 177 |
| abstract_inverted_index.Swarm | 143 |
| abstract_inverted_index.These | 184 |
| abstract_inverted_index.about | 109 |
| abstract_inverted_index.built | 7 |
| abstract_inverted_index.cycle | 166 |
| abstract_inverted_index.fruit | 51, 83 |
| abstract_inverted_index.grasp | 104, 181 |
| abstract_inverted_index.latex | 25 |
| abstract_inverted_index.model | 92 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.rigid | 21 |
| abstract_inverted_index.servo | 101 |
| abstract_inverted_index.under | 85 |
| abstract_inverted_index.using | 94, 119 |
| abstract_inverted_index.while | 178 |
| abstract_inverted_index.During | 112 |
| abstract_inverted_index.Motion | 137 |
| abstract_inverted_index.RGB--D | 64 |
| abstract_inverted_index.around | 8 |
| abstract_inverted_index.basket | 26 |
| abstract_inverted_index.camera | 65 |
| abstract_inverted_index.center | 84 |
| abstract_inverted_index.cutter | 57 |
| abstract_inverted_index.cycles | 156 |
| abstract_inverted_index.driven | 35 |
| abstract_inverted_index.force, | 105 |
| abstract_inverted_index.forces | 182 |
| abstract_inverted_index.hybrid | 10, 189 |
| abstract_inverted_index.leaves | 44 |
| abstract_inverted_index.system | 6 |
| abstract_inverted_index.torque | 102 |
| abstract_inverted_index.24.34~s | 169 |
| abstract_inverted_index.achieve | 28 |
| abstract_inverted_index.auxetic | 17 |
| abstract_inverted_index.average | 165 |
| abstract_inverted_index.conical | 48 |
| abstract_inverted_index.derived | 93 |
| abstract_inverted_index.fingers | 18, 131 |
| abstract_inverted_index.frustum | 49 |
| abstract_inverted_index.gentle, | 29 |
| abstract_inverted_index.gripper | 12, 33, 190 |
| abstract_inverted_index.mounted | 128 |
| abstract_inverted_index.overall | 172 |
| abstract_inverted_index.pedicel | 59, 81 |
| abstract_inverted_index.perform | 70 |
| abstract_inverted_index.picking | 155 |
| abstract_inverted_index.prevent | 133 |
| abstract_inverted_index.relates | 100 |
| abstract_inverted_index.results | 185 |
| abstract_inverted_index.robotic | 11 |
| abstract_inverted_index.success | 173 |
| abstract_inverted_index.virtual | 98 |
| abstract_inverted_index.Particle | 142 |
| abstract_inverted_index.achieved | 118 |
| abstract_inverted_index.combines | 14 |
| abstract_inverted_index.complete | 154 |
| abstract_inverted_index.cutting, | 159 |
| abstract_inverted_index.cutting. | 60 |
| abstract_inverted_index.enabling | 106 |
| abstract_inverted_index.feedback | 124 |
| abstract_inverted_index.includes | 42 |
| abstract_inverted_index.keypoint | 77 |
| abstract_inverted_index.pipeline | 69, 194 |
| abstract_inverted_index.planning | 147 |
| abstract_inverted_index.presents | 2 |
| abstract_inverted_index.proposed | 188 |
| abstract_inverted_index.release) | 162 |
| abstract_inverted_index.reliable | 196 |
| abstract_inverted_index.selected | 130 |
| abstract_inverted_index.semantic | 71 |
| abstract_inverted_index.tomatoes | 75 |
| abstract_inverted_index.validate | 186 |
| abstract_inverted_index.variable | 88 |
| abstract_inverted_index.actuation | 110 |
| abstract_inverted_index.bruising. | 136 |
| abstract_inverted_index.cage-like | 30 |
| abstract_inverted_index.cluttered | 199 |
| abstract_inverted_index.execution | 138 |
| abstract_inverted_index.grasping, | 160 |
| abstract_inverted_index.grasping. | 31 |
| abstract_inverted_index.occlusion | 86 |
| abstract_inverted_index.principle | 96 |
| abstract_inverted_index.reasoning | 108 |
| abstract_inverted_index.resistors | 127 |
| abstract_inverted_index.separator | 43 |
| abstract_inverted_index.supported | 140 |
| abstract_inverted_index.(approach, | 157 |
| abstract_inverted_index.analytical | 91 |
| abstract_inverted_index.autonomous | 4 |
| abstract_inverted_index.controller | 122 |
| abstract_inverted_index.execution, | 113 |
| abstract_inverted_index.harvesting | 197 |
| abstract_inverted_index.integrated | 55, 192 |
| abstract_inverted_index.isolation, | 52 |
| abstract_inverted_index.mechanism, | 40 |
| abstract_inverted_index.regulation | 116 |
| abstract_inverted_index.trajectory | 146 |
| abstract_inverted_index.transport, | 161 |
| abstract_inverted_index.Experiments | 152 |
| abstract_inverted_index.closed-loop | 114 |
| abstract_inverted_index.demonstrate | 153 |
| abstract_inverted_index.exoskeleton | 22 |
| abstract_inverted_index.grasp-force | 115 |
| abstract_inverted_index.maintaining | 179 |
| abstract_inverted_index.micro-servo | 56 |
| abstract_inverted_index.perception, | 62 |
| abstract_inverted_index.ripe/unripe | 74 |
| abstract_inverted_index.separation, | 158 |
| abstract_inverted_index.(PSO)--based | 145 |
| abstract_inverted_index.Optimization | 144 |
| abstract_inverted_index.Scotch--yoke | 39 |
| abstract_inverted_index.design-level | 107 |
| abstract_inverted_index.localization | 78 |
| abstract_inverted_index.manipulator. | 151 |
| abstract_inverted_index.segmentation | 72 |
| abstract_inverted_index.approximately | 176 |
| abstract_inverted_index.environments. | 200 |
| abstract_inverted_index.illumination. | 89 |
| abstract_inverted_index.requirements. | 111 |
| abstract_inverted_index.servo-actuated | 38 |
| abstract_inverted_index.(0.20--0.50~N). | 183 |
| abstract_inverted_index.force-sensitive | 126 |
| abstract_inverted_index.vision--control | 193 |
| abstract_inverted_index.Detectron2-based | 68 |
| abstract_inverted_index.tomato-harvesting | 5 |
| abstract_inverted_index.proportional--integral--derivative | 121 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |