A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.20944/preprints202501.0795.v1
Azimuth multichannel techniques are promising in the high-resolution and wide-swath (HRWS) synthetic aperture radar (SAR) system. However, in practical engineering, errors among channels will significantly impact the reconstruction of multi-channel echo data, resulting in a smeared SAR image. To address this issue, a novel algorithm is proposed in this article, which based on the statistical treatment of characteristic clusters. In this algorithm, separately channel imaging is carried out firstly, then the image is divided into a certain number of sub-images, then the characteristic clusters and characteristic points in each sub-image are searched, and the positions, amplitude and phase information of the characteristic points are utilized to obtain the range synchronization time errors, amplitude errors and phase errors among channels. Compared with traditional methods, the proposed method do not need to be iterated, nor do they need to solve the complex problem of eigenvalue decomposition of covariance matrix. More gratifying, it can utilize the ready-made imaging tools and software in single channel SAR system. The effectiveness of the proposed method is confirmed by simulation experiments and actual data processing.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.20944/preprints202501.0795.v1
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4406318570
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4406318570Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.20944/preprints202501.0795.v1Digital Object Identifier
- Title
-
A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical TreatmentWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-10Full publication date if available
- Authors
-
Wensen Yang, Ran Tao, Hao Huan, Jing Feng, Longyong Chen, Junhua Yang, Yihao XuList of authors in order
- Landing page
-
https://doi.org/10.20944/preprints202501.0795.v1Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.20944/preprints202501.0795.v1Direct OA link when available
- Concepts
-
Computer science, Azimuth, Algorithm, Covariance matrix, Channel (broadcasting), Synthetic aperture radar, Range (aeronautics), Amplitude, Phase (matter), Artificial intelligence, Mathematics, Telecommunications, Materials science, Quantum mechanics, Organic chemistry, Geometry, Physics, Composite material, ChemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4406318570 |
|---|---|
| doi | https://doi.org/10.20944/preprints202501.0795.v1 |
| ids.doi | https://doi.org/10.20944/preprints202501.0795.v1 |
| ids.openalex | https://openalex.org/W4406318570 |
| fwci | 0.0 |
| type | preprint |
| title | A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11038 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9979000091552734 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2202 |
| topics[0].subfield.display_name | Aerospace Engineering |
| topics[0].display_name | Advanced SAR Imaging Techniques |
| topics[1].id | https://openalex.org/T10801 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.98580002784729 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2202 |
| topics[1].subfield.display_name | Aerospace Engineering |
| topics[1].display_name | Synthetic Aperture Radar (SAR) Applications and Techniques |
| topics[2].id | https://openalex.org/T10891 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9318000078201294 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2202 |
| topics[2].subfield.display_name | Aerospace Engineering |
| topics[2].display_name | Radar Systems and Signal Processing |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7113139629364014 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C159737794 |
| concepts[1].level | 2 |
| concepts[1].score | 0.674697756767273 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q124274 |
| concepts[1].display_name | Azimuth |
| concepts[2].id | https://openalex.org/C11413529 |
| concepts[2].level | 1 |
| concepts[2].score | 0.649669349193573 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[2].display_name | Algorithm |
| concepts[3].id | https://openalex.org/C185142706 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6058067679405212 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1134404 |
| concepts[3].display_name | Covariance matrix |
| concepts[4].id | https://openalex.org/C127162648 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6024366617202759 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q16858953 |
| concepts[4].display_name | Channel (broadcasting) |
| concepts[5].id | https://openalex.org/C87360688 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5947337746620178 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q740686 |
| concepts[5].display_name | Synthetic aperture radar |
| concepts[6].id | https://openalex.org/C204323151 |
| concepts[6].level | 2 |
| concepts[6].score | 0.536788821220398 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q905424 |
| concepts[6].display_name | Range (aeronautics) |
| concepts[7].id | https://openalex.org/C180205008 |
| concepts[7].level | 2 |
| concepts[7].score | 0.41435766220092773 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[7].display_name | Amplitude |
| concepts[8].id | https://openalex.org/C44280652 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4138835668563843 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q104837 |
| concepts[8].display_name | Phase (matter) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.32305216789245605 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.16934511065483093 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C76155785 |
| concepts[11].level | 1 |
| concepts[11].score | 0.08052688837051392 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q418 |
| concepts[11].display_name | Telecommunications |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C62520636 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q944 |
| concepts[13].display_name | Quantum mechanics |
| concepts[14].id | https://openalex.org/C178790620 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11351 |
| concepts[14].display_name | Organic chemistry |
| concepts[15].id | https://openalex.org/C2524010 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[15].display_name | Geometry |
| concepts[16].id | https://openalex.org/C121332964 |
| concepts[16].level | 0 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[16].display_name | Physics |
| concepts[17].id | https://openalex.org/C159985019 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q181790 |
| concepts[17].display_name | Composite material |
| concepts[18].id | https://openalex.org/C185592680 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[18].display_name | Chemistry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7113139629364014 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/azimuth |
| keywords[1].score | 0.674697756767273 |
| keywords[1].display_name | Azimuth |
| keywords[2].id | https://openalex.org/keywords/algorithm |
| keywords[2].score | 0.649669349193573 |
| keywords[2].display_name | Algorithm |
| keywords[3].id | https://openalex.org/keywords/covariance-matrix |
| keywords[3].score | 0.6058067679405212 |
| keywords[3].display_name | Covariance matrix |
| keywords[4].id | https://openalex.org/keywords/channel |
| keywords[4].score | 0.6024366617202759 |
| keywords[4].display_name | Channel (broadcasting) |
| keywords[5].id | https://openalex.org/keywords/synthetic-aperture-radar |
| keywords[5].score | 0.5947337746620178 |
| keywords[5].display_name | Synthetic aperture radar |
| keywords[6].id | https://openalex.org/keywords/range |
| keywords[6].score | 0.536788821220398 |
| keywords[6].display_name | Range (aeronautics) |
| keywords[7].id | https://openalex.org/keywords/amplitude |
| keywords[7].score | 0.41435766220092773 |
| keywords[7].display_name | Amplitude |
| keywords[8].id | https://openalex.org/keywords/phase |
| keywords[8].score | 0.4138835668563843 |
| keywords[8].display_name | Phase (matter) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.32305216789245605 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.16934511065483093 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/telecommunications |
| keywords[11].score | 0.08052688837051392 |
| keywords[11].display_name | Telecommunications |
| language | en |
| locations[0].id | doi:10.20944/preprints202501.0795.v1 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S6309402219 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Preprints.org |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.20944/preprints202501.0795.v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100928064 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Wensen Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wensen Yang |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5102968529 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6716-040X |
| authorships[1].author.display_name | Ran Tao |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ran Tao |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5103168905 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7114-2741 |
| authorships[2].author.display_name | Hao Huan |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao Huan |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5101156717 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-8518-8664 |
| authorships[3].author.display_name | Jing Feng |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jing Feng |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5025884811 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3939-6973 |
| authorships[4].author.display_name | Longyong Chen |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Longyong Chen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5052790027 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8546-9729 |
| authorships[5].author.display_name | Junhua Yang |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Junhua Yang |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5046393206 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-3333-0394 |
| authorships[6].author.display_name | Yihao Xu |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Yihao Xu |
| authorships[6].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.20944/preprints202501.0795.v1 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Azimuth Channel Errors Estimation Algorithm Based on Characteristic Clusters Statistical Treatment |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11038 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9979000091552734 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2202 |
| primary_topic.subfield.display_name | Aerospace Engineering |
| primary_topic.display_name | Advanced SAR Imaging Techniques |
| related_works | https://openalex.org/W3006474185, https://openalex.org/W2483195039, https://openalex.org/W2611761074, https://openalex.org/W2048211457, https://openalex.org/W2281797687, https://openalex.org/W2358411735, https://openalex.org/W2107024632, https://openalex.org/W2358598243, https://openalex.org/W2068843146, https://openalex.org/W2462749609 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.20944/preprints202501.0795.v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S6309402219 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Preprints.org |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.20944/preprints202501.0795.v1 |
| primary_location.id | doi:10.20944/preprints202501.0795.v1 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S6309402219 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Preprints.org |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.20944/preprints202501.0795.v1 |
| publication_date | 2025-01-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 34, 42, 75 |
| abstract_inverted_index.In | 59 |
| abstract_inverted_index.To | 38 |
| abstract_inverted_index.be | 130 |
| abstract_inverted_index.by | 171 |
| abstract_inverted_index.do | 126, 133 |
| abstract_inverted_index.in | 5, 17, 33, 47, 87, 158 |
| abstract_inverted_index.is | 45, 65, 72, 169 |
| abstract_inverted_index.it | 149 |
| abstract_inverted_index.of | 28, 56, 78, 99, 141, 144, 165 |
| abstract_inverted_index.on | 52 |
| abstract_inverted_index.to | 105, 129, 136 |
| abstract_inverted_index.SAR | 36, 161 |
| abstract_inverted_index.The | 163 |
| abstract_inverted_index.and | 8, 84, 92, 96, 114, 156, 174 |
| abstract_inverted_index.are | 3, 90, 103 |
| abstract_inverted_index.can | 150 |
| abstract_inverted_index.nor | 132 |
| abstract_inverted_index.not | 127 |
| abstract_inverted_index.out | 67 |
| abstract_inverted_index.the | 6, 26, 53, 70, 81, 93, 100, 107, 123, 138, 152, 166 |
| abstract_inverted_index.More | 147 |
| abstract_inverted_index.data | 176 |
| abstract_inverted_index.each | 88 |
| abstract_inverted_index.echo | 30 |
| abstract_inverted_index.into | 74 |
| abstract_inverted_index.need | 128, 135 |
| abstract_inverted_index.then | 69, 80 |
| abstract_inverted_index.they | 134 |
| abstract_inverted_index.this | 40, 48, 60 |
| abstract_inverted_index.time | 110 |
| abstract_inverted_index.will | 23 |
| abstract_inverted_index.with | 120 |
| abstract_inverted_index.(SAR) | 14 |
| abstract_inverted_index.among | 21, 117 |
| abstract_inverted_index.based | 51 |
| abstract_inverted_index.data, | 31 |
| abstract_inverted_index.image | 71 |
| abstract_inverted_index.novel | 43 |
| abstract_inverted_index.phase | 97, 115 |
| abstract_inverted_index.radar | 13 |
| abstract_inverted_index.range | 108 |
| abstract_inverted_index.solve | 137 |
| abstract_inverted_index.tools | 155 |
| abstract_inverted_index.which | 50 |
| abstract_inverted_index.(HRWS) | 10 |
| abstract_inverted_index.actual | 175 |
| abstract_inverted_index.errors | 20, 113, 116 |
| abstract_inverted_index.image. | 37 |
| abstract_inverted_index.impact | 25 |
| abstract_inverted_index.issue, | 41 |
| abstract_inverted_index.method | 125, 168 |
| abstract_inverted_index.number | 77 |
| abstract_inverted_index.obtain | 106 |
| abstract_inverted_index.points | 86, 102 |
| abstract_inverted_index.single | 159 |
| abstract_inverted_index.Azimuth | 0 |
| abstract_inverted_index.address | 39 |
| abstract_inverted_index.carried | 66 |
| abstract_inverted_index.certain | 76 |
| abstract_inverted_index.channel | 63, 160 |
| abstract_inverted_index.complex | 139 |
| abstract_inverted_index.divided | 73 |
| abstract_inverted_index.errors, | 111 |
| abstract_inverted_index.imaging | 64, 154 |
| abstract_inverted_index.matrix. | 146 |
| abstract_inverted_index.problem | 140 |
| abstract_inverted_index.smeared | 35 |
| abstract_inverted_index.system. | 15, 162 |
| abstract_inverted_index.utilize | 151 |
| abstract_inverted_index.Compared | 119 |
| abstract_inverted_index.However, | 16 |
| abstract_inverted_index.aperture | 12 |
| abstract_inverted_index.article, | 49 |
| abstract_inverted_index.channels | 22 |
| abstract_inverted_index.clusters | 83 |
| abstract_inverted_index.firstly, | 68 |
| abstract_inverted_index.methods, | 122 |
| abstract_inverted_index.proposed | 46, 124, 167 |
| abstract_inverted_index.software | 157 |
| abstract_inverted_index.utilized | 104 |
| abstract_inverted_index.algorithm | 44 |
| abstract_inverted_index.amplitude | 95, 112 |
| abstract_inverted_index.channels. | 118 |
| abstract_inverted_index.clusters. | 58 |
| abstract_inverted_index.confirmed | 170 |
| abstract_inverted_index.iterated, | 131 |
| abstract_inverted_index.practical | 18 |
| abstract_inverted_index.promising | 4 |
| abstract_inverted_index.resulting | 32 |
| abstract_inverted_index.searched, | 91 |
| abstract_inverted_index.sub-image | 89 |
| abstract_inverted_index.synthetic | 11 |
| abstract_inverted_index.treatment | 55 |
| abstract_inverted_index.algorithm, | 61 |
| abstract_inverted_index.covariance | 145 |
| abstract_inverted_index.eigenvalue | 142 |
| abstract_inverted_index.positions, | 94 |
| abstract_inverted_index.ready-made | 153 |
| abstract_inverted_index.separately | 62 |
| abstract_inverted_index.simulation | 172 |
| abstract_inverted_index.techniques | 2 |
| abstract_inverted_index.wide-swath | 9 |
| abstract_inverted_index.experiments | 173 |
| abstract_inverted_index.gratifying, | 148 |
| abstract_inverted_index.information | 98 |
| abstract_inverted_index.processing. | 177 |
| abstract_inverted_index.statistical | 54 |
| abstract_inverted_index.sub-images, | 79 |
| abstract_inverted_index.traditional | 121 |
| abstract_inverted_index.engineering, | 19 |
| abstract_inverted_index.multichannel | 1 |
| abstract_inverted_index.decomposition | 143 |
| abstract_inverted_index.effectiveness | 164 |
| abstract_inverted_index.multi-channel | 29 |
| abstract_inverted_index.significantly | 24 |
| abstract_inverted_index.characteristic | 57, 82, 85, 101 |
| abstract_inverted_index.reconstruction | 27 |
| abstract_inverted_index.high-resolution | 7 |
| abstract_inverted_index.synchronization | 109 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 7 |
| citation_normalized_percentile.value | 0.00547745 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |