A novel channel reduction concept to enhance the classification of motor imagery tasks in brain-computer interface systems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0335511
Electroencephalogram (EEG) signals play a critical role in advancing brain-computer interface (BCI) systems, particularly for detecting motor imagery (MI) movements. However, analysing large volume of EEG datasets faces some challenges due to redundant information, and performance degradation. Irrelevant channels introduce noise, which reduces accuracy and slows system performance. To address these issues, this study aims to develop a novel channel selection method to enhance EEG-based MI task performance in BCI applications. Our proposed hybrid approach combines statistical t-tests with a Bonferroni correction-based channel reduction technique, followed by the application of a Deep Learning Regularized Common Spatial Pattern with Neural Network (DLRCSPNN) framework. This framework employs DLRCSP for feature extraction and neural network (NN) algorithm for classification. Our developed method excluded channels with correlation coefficients below 0.5, retaining only significant, non-redundant channels and tested on three real-time EEG-based BCI datasets. This study produces the highest accuracy score in the case of every subjects above 90% for all the applied datasets. In the first dataset, our method achieved the highest accuracy, improving by 3.27% to 42.53% in terms of individual subject compared to seven existing machine learning algorithms. In the second and third dataset, it outperformed existing approaches, with accuracy gains of 5% to 45% and 1% to 17.47% respectively. Comparisons with a CSP and NN framework confirmed DLRCSPNN’s algorithms superior performance. These results demonstrate the effectiveness of the approach, offering a new perspective on the identification of MI task performance in EEG based BCI technology. This proposed technique will enable rapid identification of motor-disabled individuals’ intentions, supporting patient rehabilitation and improving daily living.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0335511
- OA Status
- gold
- References
- 43
- OpenAlex ID
- https://openalex.org/W4415747524
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415747524Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0335511Digital Object Identifier
- Title
-
A novel channel reduction concept to enhance the classification of motor imagery tasks in brain-computer interface systemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-31Full publication date if available
- Authors
-
Taslima Khanam, Siuly Siuly, Kabir Ahmad, Hua WangList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0335511Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1371/journal.pone.0335511Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
43Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415747524 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0335511 |
| ids.doi | https://doi.org/10.1371/journal.pone.0335511 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/41171945 |
| ids.openalex | https://openalex.org/W4415747524 |
| fwci | |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D062207 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Brain-Computer Interfaces |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D006801 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Humans |
| mesh[2].qualifier_ui | Q000379 |
| mesh[2].descriptor_ui | D004569 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | methods |
| mesh[2].descriptor_name | Electroencephalography |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D016571 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Neural Networks, Computer |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D008297 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Male |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000328 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Adult |
| mesh[7].qualifier_ui | Q000502 |
| mesh[7].descriptor_ui | D007092 |
| mesh[7].is_major_topic | True |
| mesh[7].qualifier_name | physiology |
| mesh[7].descriptor_name | Imagination |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D005260 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Female |
| mesh[9].qualifier_ui | Q000502 |
| mesh[9].descriptor_ui | D009068 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | physiology |
| mesh[9].descriptor_name | Movement |
| mesh[10].qualifier_ui | Q000502 |
| mesh[10].descriptor_ui | D001921 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | physiology |
| mesh[10].descriptor_name | Brain |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D012815 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D062207 |
| mesh[12].is_major_topic | True |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Brain-Computer Interfaces |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D006801 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Humans |
| mesh[14].qualifier_ui | Q000379 |
| mesh[14].descriptor_ui | D004569 |
| mesh[14].is_major_topic | True |
| mesh[14].qualifier_name | methods |
| mesh[14].descriptor_name | Electroencephalography |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000465 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Algorithms |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D016571 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Neural Networks, Computer |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D008297 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Male |
| mesh[18].qualifier_ui | |
| mesh[18].descriptor_ui | D000328 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | |
| mesh[18].descriptor_name | Adult |
| mesh[19].qualifier_ui | Q000502 |
| mesh[19].descriptor_ui | D007092 |
| mesh[19].is_major_topic | True |
| mesh[19].qualifier_name | physiology |
| mesh[19].descriptor_name | Imagination |
| mesh[20].qualifier_ui | |
| mesh[20].descriptor_ui | D005260 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | |
| mesh[20].descriptor_name | Female |
| mesh[21].qualifier_ui | Q000502 |
| mesh[21].descriptor_ui | D009068 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | physiology |
| mesh[21].descriptor_name | Movement |
| mesh[22].qualifier_ui | Q000502 |
| mesh[22].descriptor_ui | D001921 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | physiology |
| mesh[22].descriptor_name | Brain |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D012815 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Signal Processing, Computer-Assisted |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D062207 |
| mesh[24].is_major_topic | True |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Brain-Computer Interfaces |
| mesh[25].qualifier_ui | |
| mesh[25].descriptor_ui | D006801 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | |
| mesh[25].descriptor_name | Humans |
| mesh[26].qualifier_ui | Q000379 |
| mesh[26].descriptor_ui | D004569 |
| mesh[26].is_major_topic | True |
| mesh[26].qualifier_name | methods |
| mesh[26].descriptor_name | Electroencephalography |
| mesh[27].qualifier_ui | |
| mesh[27].descriptor_ui | D000465 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | |
| mesh[27].descriptor_name | Algorithms |
| mesh[28].qualifier_ui | |
| mesh[28].descriptor_ui | D016571 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | |
| mesh[28].descriptor_name | Neural Networks, Computer |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D008297 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Male |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000328 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Adult |
| mesh[31].qualifier_ui | Q000502 |
| mesh[31].descriptor_ui | D007092 |
| mesh[31].is_major_topic | True |
| mesh[31].qualifier_name | physiology |
| mesh[31].descriptor_name | Imagination |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D005260 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Female |
| mesh[33].qualifier_ui | Q000502 |
| mesh[33].descriptor_ui | D009068 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | physiology |
| mesh[33].descriptor_name | Movement |
| mesh[34].qualifier_ui | Q000502 |
| mesh[34].descriptor_ui | D001921 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | physiology |
| mesh[34].descriptor_name | Brain |
| mesh[35].qualifier_ui | |
| mesh[35].descriptor_ui | D012815 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | |
| mesh[35].descriptor_name | Signal Processing, Computer-Assisted |
| type | article |
| title | A novel channel reduction concept to enhance the classification of motor imagery tasks in brain-computer interface systems |
| biblio.issue | 10 |
| biblio.volume | 20 |
| biblio.last_page | e0335511 |
| biblio.first_page | e0335511 |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0335511 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_lineage_names | Public Library of Science |
| locations[0].license | cc-by |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS One |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0335511 |
| locations[1].id | pmid:41171945 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/41171945 |
| locations[2].id | pmh:oai:doaj.org/article:c731948481494d178d8ecf464325a544 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 20, Iss 10, p e0335511 (2025) |
| locations[2].landing_page_url | https://doaj.org/article/c731948481494d178d8ecf464325a544 |
| locations[3].id | pmh:oai:europepmc.org:11387587 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/12578340 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5029265091 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-5842-930X |
| authorships[0].author.display_name | Taslima Khanam |
| authorships[0].countries | AU |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I71270174 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| authorships[0].institutions[0].id | https://openalex.org/I71270174 |
| authorships[0].institutions[0].ror | https://ror.org/04j757h98 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I71270174 |
| authorships[0].institutions[0].country_code | AU |
| authorships[0].institutions[0].display_name | Victoria University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Taslima Khanam |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| authorships[1].author.id | https://openalex.org/A5057305454 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2491-0546 |
| authorships[1].author.display_name | Siuly Siuly |
| authorships[1].countries | AU |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I71270174 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| authorships[1].institutions[0].id | https://openalex.org/I71270174 |
| authorships[1].institutions[0].ror | https://ror.org/04j757h98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I71270174 |
| authorships[1].institutions[0].country_code | AU |
| authorships[1].institutions[0].display_name | Victoria University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Siuly Siuly |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| authorships[2].author.id | https://openalex.org/A5081589254 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0208-5725 |
| authorships[2].author.display_name | Kabir Ahmad |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I132157203 |
| authorships[2].affiliations[0].raw_affiliation_string | Barwon Health, Geelong, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I132157203 |
| authorships[2].institutions[0].ror | https://ror.org/00my0hg66 |
| authorships[2].institutions[0].type | healthcare |
| authorships[2].institutions[0].lineage | https://openalex.org/I132157203 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Barwon Health |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Kabir Ahmad |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Barwon Health, Geelong, Australia |
| authorships[3].author.id | https://openalex.org/A5100403969 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-8465-0996 |
| authorships[3].author.display_name | Hua Wang |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I71270174 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I71270174 |
| authorships[3].institutions[0].ror | https://ror.org/04j757h98 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I71270174 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | Victoria University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hua Wang |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Institute for Sustainable Industries and Liveable Cities, Victoria University, Melbourne, Australia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1371/journal.pone.0335511 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-31T00:00:00 |
| display_name | A novel channel reduction concept to enhance the classification of motor imagery tasks in brain-computer interface systems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 4 |
| best_oa_location.id | doi:10.1371/journal.pone.0335511 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_lineage_names | Public Library of Science |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS One |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0335511 |
| primary_location.id | doi:10.1371/journal.pone.0335511 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_lineage_names | Public Library of Science |
| primary_location.license | cc-by |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS One |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0335511 |
| publication_date | 2025-10-31 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2074838957, https://openalex.org/W772526079, https://openalex.org/W2770384163, https://openalex.org/W4310080639, https://openalex.org/W4293111513, https://openalex.org/W2058552669, https://openalex.org/W2998852862, https://openalex.org/W3193449393, https://openalex.org/W2901342540, https://openalex.org/W2622900209, https://openalex.org/W4390533323, https://openalex.org/W4401340475, https://openalex.org/W2289208053, https://openalex.org/W2170317771, https://openalex.org/W3123257367, https://openalex.org/W2240753140, https://openalex.org/W2903975238, https://openalex.org/W2149925546, https://openalex.org/W4407028411, https://openalex.org/W4406773916, https://openalex.org/W4406787127, https://openalex.org/W4402532475, https://openalex.org/W4404633718, https://openalex.org/W3090613974, https://openalex.org/W3155355436, https://openalex.org/W2097080550, https://openalex.org/W2121745483, https://openalex.org/W2558378728, https://openalex.org/W2946468588, https://openalex.org/W2000681538, https://openalex.org/W2152119085, https://openalex.org/W2101629643, https://openalex.org/W4390204095, https://openalex.org/W2142280324, https://openalex.org/W2099509424, https://openalex.org/W2809595040, https://openalex.org/W2019282798, https://openalex.org/W4250664506, https://openalex.org/W2597866042, https://openalex.org/W4319988528, https://openalex.org/W4221077140, https://openalex.org/W3136666282, https://openalex.org/W4398151558 |
| referenced_works_count | 43 |
| abstract_inverted_index.a | 4, 57, 79, 90, 210, 229 |
| abstract_inverted_index.1% | 204 |
| abstract_inverted_index.5% | 200 |
| abstract_inverted_index.In | 159, 186 |
| abstract_inverted_index.MI | 65, 236 |
| abstract_inverted_index.NN | 213 |
| abstract_inverted_index.To | 48 |
| abstract_inverted_index.by | 86, 170 |
| abstract_inverted_index.in | 7, 68, 146, 174, 239 |
| abstract_inverted_index.it | 192 |
| abstract_inverted_index.of | 24, 89, 149, 176, 199, 225, 235, 251 |
| abstract_inverted_index.on | 133, 232 |
| abstract_inverted_index.to | 31, 55, 62, 172, 180, 201, 205 |
| abstract_inverted_index.45% | 202 |
| abstract_inverted_index.90% | 153 |
| abstract_inverted_index.BCI | 69, 137, 242 |
| abstract_inverted_index.CSP | 211 |
| abstract_inverted_index.EEG | 25, 240 |
| abstract_inverted_index.Our | 71, 116 |
| abstract_inverted_index.all | 155 |
| abstract_inverted_index.and | 34, 44, 109, 131, 189, 203, 212, 258 |
| abstract_inverted_index.due | 30 |
| abstract_inverted_index.for | 14, 106, 114, 154 |
| abstract_inverted_index.new | 230 |
| abstract_inverted_index.our | 163 |
| abstract_inverted_index.the | 87, 142, 147, 156, 160, 166, 187, 223, 226, 233 |
| abstract_inverted_index.(MI) | 18 |
| abstract_inverted_index.(NN) | 112 |
| abstract_inverted_index.0.5, | 125 |
| abstract_inverted_index.Deep | 91 |
| abstract_inverted_index.This | 102, 139, 244 |
| abstract_inverted_index.aims | 54 |
| abstract_inverted_index.case | 148 |
| abstract_inverted_index.only | 127 |
| abstract_inverted_index.play | 3 |
| abstract_inverted_index.role | 6 |
| abstract_inverted_index.some | 28 |
| abstract_inverted_index.task | 66, 237 |
| abstract_inverted_index.this | 52 |
| abstract_inverted_index.will | 247 |
| abstract_inverted_index.with | 78, 97, 121, 196, 209 |
| abstract_inverted_index.(BCI) | 11 |
| abstract_inverted_index.(EEG) | 1 |
| abstract_inverted_index.3.27% | 171 |
| abstract_inverted_index.These | 220 |
| abstract_inverted_index.above | 152 |
| abstract_inverted_index.based | 241 |
| abstract_inverted_index.below | 124 |
| abstract_inverted_index.daily | 260 |
| abstract_inverted_index.every | 150 |
| abstract_inverted_index.faces | 27 |
| abstract_inverted_index.first | 161 |
| abstract_inverted_index.gains | 198 |
| abstract_inverted_index.large | 22 |
| abstract_inverted_index.motor | 16 |
| abstract_inverted_index.novel | 58 |
| abstract_inverted_index.rapid | 249 |
| abstract_inverted_index.score | 145 |
| abstract_inverted_index.seven | 181 |
| abstract_inverted_index.slows | 45 |
| abstract_inverted_index.study | 53, 140 |
| abstract_inverted_index.terms | 175 |
| abstract_inverted_index.these | 50 |
| abstract_inverted_index.third | 190 |
| abstract_inverted_index.three | 134 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.17.47% | 206 |
| abstract_inverted_index.42.53% | 173 |
| abstract_inverted_index.Common | 94 |
| abstract_inverted_index.DLRCSP | 105 |
| abstract_inverted_index.Neural | 98 |
| abstract_inverted_index.enable | 248 |
| abstract_inverted_index.hybrid | 73 |
| abstract_inverted_index.method | 61, 118, 164 |
| abstract_inverted_index.neural | 110 |
| abstract_inverted_index.noise, | 40 |
| abstract_inverted_index.second | 188 |
| abstract_inverted_index.system | 46 |
| abstract_inverted_index.tested | 132 |
| abstract_inverted_index.volume | 23 |
| abstract_inverted_index.Network | 99 |
| abstract_inverted_index.Pattern | 96 |
| abstract_inverted_index.Spatial | 95 |
| abstract_inverted_index.address | 49 |
| abstract_inverted_index.applied | 157 |
| abstract_inverted_index.channel | 59, 82 |
| abstract_inverted_index.develop | 56 |
| abstract_inverted_index.employs | 104 |
| abstract_inverted_index.enhance | 63 |
| abstract_inverted_index.feature | 107 |
| abstract_inverted_index.highest | 143, 167 |
| abstract_inverted_index.imagery | 17 |
| abstract_inverted_index.issues, | 51 |
| abstract_inverted_index.living. | 261 |
| abstract_inverted_index.machine | 183 |
| abstract_inverted_index.network | 111 |
| abstract_inverted_index.patient | 256 |
| abstract_inverted_index.reduces | 42 |
| abstract_inverted_index.results | 221 |
| abstract_inverted_index.signals | 2 |
| abstract_inverted_index.subject | 178 |
| abstract_inverted_index.t-tests | 77 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.Learning | 92 |
| abstract_inverted_index.accuracy | 43, 144, 197 |
| abstract_inverted_index.achieved | 165 |
| abstract_inverted_index.approach | 74 |
| abstract_inverted_index.channels | 38, 120, 130 |
| abstract_inverted_index.combines | 75 |
| abstract_inverted_index.compared | 179 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.dataset, | 162, 191 |
| abstract_inverted_index.datasets | 26 |
| abstract_inverted_index.excluded | 119 |
| abstract_inverted_index.existing | 182, 194 |
| abstract_inverted_index.followed | 85 |
| abstract_inverted_index.learning | 184 |
| abstract_inverted_index.offering | 228 |
| abstract_inverted_index.produces | 141 |
| abstract_inverted_index.proposed | 72, 245 |
| abstract_inverted_index.subjects | 151 |
| abstract_inverted_index.superior | 218 |
| abstract_inverted_index.systems, | 12 |
| abstract_inverted_index.EEG-based | 64, 136 |
| abstract_inverted_index.accuracy, | 168 |
| abstract_inverted_index.advancing | 8 |
| abstract_inverted_index.algorithm | 113 |
| abstract_inverted_index.analysing | 21 |
| abstract_inverted_index.approach, | 227 |
| abstract_inverted_index.confirmed | 215 |
| abstract_inverted_index.datasets. | 138, 158 |
| abstract_inverted_index.detecting | 15 |
| abstract_inverted_index.developed | 117 |
| abstract_inverted_index.framework | 103, 214 |
| abstract_inverted_index.improving | 169, 259 |
| abstract_inverted_index.interface | 10 |
| abstract_inverted_index.introduce | 39 |
| abstract_inverted_index.real-time | 135 |
| abstract_inverted_index.reduction | 83 |
| abstract_inverted_index.redundant | 32 |
| abstract_inverted_index.retaining | 126 |
| abstract_inverted_index.selection | 60 |
| abstract_inverted_index.technique | 246 |
| abstract_inverted_index.(DLRCSPNN) | 100 |
| abstract_inverted_index.Bonferroni | 80 |
| abstract_inverted_index.Irrelevant | 37 |
| abstract_inverted_index.algorithms | 217 |
| abstract_inverted_index.challenges | 29 |
| abstract_inverted_index.extraction | 108 |
| abstract_inverted_index.framework. | 101 |
| abstract_inverted_index.individual | 177 |
| abstract_inverted_index.movements. | 19 |
| abstract_inverted_index.supporting | 255 |
| abstract_inverted_index.technique, | 84 |
| abstract_inverted_index.Comparisons | 208 |
| abstract_inverted_index.Regularized | 93 |
| abstract_inverted_index.algorithms. | 185 |
| abstract_inverted_index.application | 88 |
| abstract_inverted_index.approaches, | 195 |
| abstract_inverted_index.correlation | 122 |
| abstract_inverted_index.demonstrate | 222 |
| abstract_inverted_index.intentions, | 254 |
| abstract_inverted_index.performance | 35, 67, 238 |
| abstract_inverted_index.perspective | 231 |
| abstract_inverted_index.statistical | 76 |
| abstract_inverted_index.technology. | 243 |
| abstract_inverted_index.DLRCSPNN’s | 216 |
| abstract_inverted_index.coefficients | 123 |
| abstract_inverted_index.degradation. | 36 |
| abstract_inverted_index.information, | 33 |
| abstract_inverted_index.outperformed | 193 |
| abstract_inverted_index.particularly | 13 |
| abstract_inverted_index.performance. | 47, 219 |
| abstract_inverted_index.significant, | 128 |
| abstract_inverted_index.applications. | 70 |
| abstract_inverted_index.effectiveness | 224 |
| abstract_inverted_index.non-redundant | 129 |
| abstract_inverted_index.respectively. | 207 |
| abstract_inverted_index.brain-computer | 9 |
| abstract_inverted_index.identification | 234, 250 |
| abstract_inverted_index.individuals’ | 253 |
| abstract_inverted_index.motor-disabled | 252 |
| abstract_inverted_index.rehabilitation | 257 |
| abstract_inverted_index.classification. | 115 |
| abstract_inverted_index.correction-based | 81 |
| abstract_inverted_index.Electroencephalogram | 0 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5057305454, https://openalex.org/A5100403969, https://openalex.org/A5081589254, https://openalex.org/A5029265091 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| corresponding_institution_ids | https://openalex.org/I132157203, https://openalex.org/I71270174 |
| citation_normalized_percentile |