A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1109/tnsre.2021.3139095
The motor imagery (MI) based brain-computer interfaces (BCIs) have been proposed as a potential physical rehabilitation technology. However, the low classification accuracy achievable with MI tasks is still a challenge when building effective BCI systems. We propose a novel MI classification model based on measurement of functional connectivity between brain regions and graph theory. Specifically, motifs describing local network structures in the brain are extracted from functional connectivity graphs. A graph embedding model called Ego-CNNs is then used to build a classifier, which can convert the graph from a structural representation to a fixed-dimensional vector for detecting critical structure in the graph. We validate our proposed method on four datasets, and the results show that our proposed method produces high classification accuracies in two-class classification tasks (92.8% for dataset 1, 93.4% for dataset 2, 96.5% for dataset 3, and 80.2% for dataset 4) and multiclass classification tasks (90.33% for dataset 1). Our proposed method achieves a mean Kappa value of 0.88 across nine participants, which is superior to other methods we compared it to. These results indicate that there is a local structural difference in functional connectivity graphs extracted under different motor imagery tasks. Our proposed method has great potential for motor imagery classification in future studies.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tnsre.2021.3139095
- https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdf
- OA Status
- diamond
- Cited By
- 50
- References
- 69
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4200285824
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4200285824Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tnsre.2021.3139095Digital Object Identifier
- Title
-
A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer InterfaceWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-28Full publication date if available
- Authors
-
Jing Jin, Hao Sun, Ian Daly, Shurui Li, Chang Liu, Xingyu Wang, Andrzej CichockiList of authors in order
- Landing page
-
https://doi.org/10.1109/tnsre.2021.3139095Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdfDirect OA link when available
- Concepts
-
Brain–computer interface, Motor imagery, Computer science, Artificial intelligence, Pattern recognition (psychology), Classifier (UML), Graph embedding, Graph, Support vector machine, Embedding, Multiclass classification, Electroencephalography, Machine learning, Theoretical computer science, Psychology, PsychiatryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
50Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 18, 2024: 12, 2023: 12, 2022: 8Per-year citation counts (last 5 years)
- References (count)
-
69Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4200285824 |
|---|---|
| doi | https://doi.org/10.1109/tnsre.2021.3139095 |
| ids.doi | https://doi.org/10.1109/tnsre.2021.3139095 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34962871 |
| ids.openalex | https://openalex.org/W4200285824 |
| fwci | 4.29689779 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D001921 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Brain |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D062207 |
| mesh[2].is_major_topic | True |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Brain-Computer Interfaces |
| mesh[3].qualifier_ui | Q000379 |
| mesh[3].descriptor_ui | D004569 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | methods |
| mesh[3].descriptor_name | Electroencephalography |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D006801 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Humans |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D007092 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Imagination |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D000465 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Algorithms |
| mesh[7].qualifier_ui | |
| mesh[7].descriptor_ui | D001921 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | |
| mesh[7].descriptor_name | Brain |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D062207 |
| mesh[8].is_major_topic | True |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Brain-Computer Interfaces |
| mesh[9].qualifier_ui | Q000379 |
| mesh[9].descriptor_ui | D004569 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | methods |
| mesh[9].descriptor_name | Electroencephalography |
| mesh[10].qualifier_ui | |
| mesh[10].descriptor_ui | D006801 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | |
| mesh[10].descriptor_name | Humans |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D007092 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Imagination |
| type | article |
| title | A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface |
| awards[0].id | https://openalex.org/G8700563742 |
| awards[0].funder_id | https://openalex.org/F4320321001 |
| awards[0].display_name | |
| awards[0].funder_award_id | 61573142 |
| awards[0].funder_display_name | National Natural Science Foundation of China |
| awards[1].id | https://openalex.org/G3206569464 |
| awards[1].funder_id | https://openalex.org/F4320335777 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2017YFB13003002 |
| awards[1].funder_display_name | National Key Research and Development Program of China |
| awards[2].id | https://openalex.org/G5190105470 |
| awards[2].funder_id | https://openalex.org/F4320321659 |
| awards[2].display_name | |
| awards[2].funder_award_id | 19SG25 |
| awards[2].funder_display_name | Shanghai Education Development Foundation |
| awards[3].id | https://openalex.org/G3397010727 |
| awards[3].funder_id | https://openalex.org/F4320335785 |
| awards[3].display_name | |
| awards[3].funder_award_id | B17017 |
| awards[3].funder_display_name | Project 211 |
| awards[4].id | https://openalex.org/G3390851602 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 61773164 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | |
| biblio.volume | 30 |
| biblio.last_page | 29 |
| biblio.first_page | 20 |
| topics[0].id | https://openalex.org/T10429 |
| topics[0].field.id | https://openalex.org/fields/28 |
| topics[0].field.display_name | Neuroscience |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2805 |
| topics[0].subfield.display_name | Cognitive Neuroscience |
| topics[0].display_name | EEG and Brain-Computer Interfaces |
| topics[1].id | https://openalex.org/T10241 |
| topics[1].field.id | https://openalex.org/fields/28 |
| topics[1].field.display_name | Neuroscience |
| topics[1].score | 0.9980999827384949 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2805 |
| topics[1].subfield.display_name | Cognitive Neuroscience |
| topics[1].display_name | Functional Brain Connectivity Studies |
| topics[2].id | https://openalex.org/T10502 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.991100013256073 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Advanced Memory and Neural Computing |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320321659 |
| funders[1].ror | https://ror.org/02kq92y46 |
| funders[1].display_name | Shanghai Education Development Foundation |
| funders[2].id | https://openalex.org/F4320335777 |
| funders[2].ror | |
| funders[2].display_name | National Key Research and Development Program of China |
| funders[3].id | https://openalex.org/F4320335785 |
| funders[3].ror | |
| funders[3].display_name | Project 211 |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C173201364 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7657572627067566 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q897410 |
| concepts[0].display_name | Brain–computer interface |
| concepts[1].id | https://openalex.org/C54808283 |
| concepts[1].level | 4 |
| concepts[1].score | 0.7452054023742676 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q6918191 |
| concepts[1].display_name | Motor imagery |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.7208409905433655 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6110796928405762 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5864407420158386 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C95623464 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5766567587852478 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1096149 |
| concepts[5].display_name | Classifier (UML) |
| concepts[6].id | https://openalex.org/C75564084 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5633650422096252 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q5597085 |
| concepts[6].display_name | Graph embedding |
| concepts[7].id | https://openalex.org/C132525143 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5150213241577148 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q141488 |
| concepts[7].display_name | Graph |
| concepts[8].id | https://openalex.org/C12267149 |
| concepts[8].level | 2 |
| concepts[8].score | 0.5147278308868408 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[8].display_name | Support vector machine |
| concepts[9].id | https://openalex.org/C41608201 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4948405623435974 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q980509 |
| concepts[9].display_name | Embedding |
| concepts[10].id | https://openalex.org/C123860398 |
| concepts[10].level | 3 |
| concepts[10].score | 0.44903090596199036 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q6934605 |
| concepts[10].display_name | Multiclass classification |
| concepts[11].id | https://openalex.org/C522805319 |
| concepts[11].level | 2 |
| concepts[11].score | 0.35816845297813416 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q179965 |
| concepts[11].display_name | Electroencephalography |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.35122284293174744 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C80444323 |
| concepts[13].level | 1 |
| concepts[13].score | 0.10484492778778076 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[13].display_name | Theoretical computer science |
| concepts[14].id | https://openalex.org/C15744967 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[14].display_name | Psychology |
| concepts[15].id | https://openalex.org/C118552586 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7867 |
| concepts[15].display_name | Psychiatry |
| keywords[0].id | https://openalex.org/keywords/brain–computer-interface |
| keywords[0].score | 0.7657572627067566 |
| keywords[0].display_name | Brain–computer interface |
| keywords[1].id | https://openalex.org/keywords/motor-imagery |
| keywords[1].score | 0.7452054023742676 |
| keywords[1].display_name | Motor imagery |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.7208409905433655 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6110796928405762 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5864407420158386 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/classifier |
| keywords[5].score | 0.5766567587852478 |
| keywords[5].display_name | Classifier (UML) |
| keywords[6].id | https://openalex.org/keywords/graph-embedding |
| keywords[6].score | 0.5633650422096252 |
| keywords[6].display_name | Graph embedding |
| keywords[7].id | https://openalex.org/keywords/graph |
| keywords[7].score | 0.5150213241577148 |
| keywords[7].display_name | Graph |
| keywords[8].id | https://openalex.org/keywords/support-vector-machine |
| keywords[8].score | 0.5147278308868408 |
| keywords[8].display_name | Support vector machine |
| keywords[9].id | https://openalex.org/keywords/embedding |
| keywords[9].score | 0.4948405623435974 |
| keywords[9].display_name | Embedding |
| keywords[10].id | https://openalex.org/keywords/multiclass-classification |
| keywords[10].score | 0.44903090596199036 |
| keywords[10].display_name | Multiclass classification |
| keywords[11].id | https://openalex.org/keywords/electroencephalography |
| keywords[11].score | 0.35816845297813416 |
| keywords[11].display_name | Electroencephalography |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.35122284293174744 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[13].score | 0.10484492778778076 |
| keywords[13].display_name | Theoretical computer science |
| language | en |
| locations[0].id | doi:10.1109/tnsre.2021.3139095 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S98183460 |
| locations[0].source.issn | 1534-4320, 1558-0210 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1534-4320 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | other-oa |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/other-oa |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| locations[0].landing_page_url | https://doi.org/10.1109/tnsre.2021.3139095 |
| locations[1].id | pmid:34962871 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34962871 |
| locations[2].id | pmh:oai:doaj.org/article:84dcbf331fb54323850c3ddf20965987 |
| locations[2].is_oa | False |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol 30, Pp 20-29 (2022) |
| locations[2].landing_page_url | https://doaj.org/article/84dcbf331fb54323850c3ddf20965987 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5100739910 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6133-5491 |
| authorships[0].author.display_name | Jing Jin |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[0].institutions[0].id | https://openalex.org/I143593769 |
| authorships[0].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | East China University of Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jing Jin |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[1].author.id | https://openalex.org/A5100359490 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6315-4838 |
| authorships[1].author.display_name | Hao Sun |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[1].institutions[0].id | https://openalex.org/I143593769 |
| authorships[1].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | East China University of Science and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hao Sun |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[2].author.id | https://openalex.org/A5002398033 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5489-0393 |
| authorships[2].author.display_name | Ian Daly |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I110002522 |
| authorships[2].affiliations[0].raw_affiliation_string | Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K |
| authorships[2].institutions[0].id | https://openalex.org/I110002522 |
| authorships[2].institutions[0].ror | https://ror.org/02nkf1q06 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I110002522 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University of Essex |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Ian Daly |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, U.K |
| authorships[3].author.id | https://openalex.org/A5101484422 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-6244-6396 |
| authorships[3].author.display_name | Shurui Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[3].institutions[0].id | https://openalex.org/I143593769 |
| authorships[3].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | East China University of Science and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Shurui Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[4].author.id | https://openalex.org/A5100652635 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2930-306X |
| authorships[4].author.display_name | Chang Liu |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[4].institutions[0].id | https://openalex.org/I143593769 |
| authorships[4].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | East China University of Science and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Chang Liu |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[5].author.id | https://openalex.org/A5100351260 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-8869-6150 |
| authorships[5].author.display_name | Xingyu Wang |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I143593769 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[5].institutions[0].id | https://openalex.org/I143593769 |
| authorships[5].institutions[0].ror | https://ror.org/01vyrm377 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I143593769 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | East China University of Science and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Xingyu Wang |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, China |
| authorships[6].author.id | https://openalex.org/A5018676117 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-8364-7226 |
| authorships[6].author.display_name | Andrzej Cichocki |
| authorships[6].countries | JP, PL, RU |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I2800939219 |
| authorships[6].affiliations[0].raw_affiliation_string | RIKEN Brain Science Institute, Wako, Japan |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I3019271933 |
| authorships[6].affiliations[1].raw_affiliation_string | Nicolaus Copernicus University (UMK), Torun, Poland |
| authorships[6].affiliations[2].institution_ids | https://openalex.org/I125989756 |
| authorships[6].affiliations[2].raw_affiliation_string | Skolkovo Institute of Science and Technology (SKOLTECH), Moscow, Russia |
| authorships[6].institutions[0].id | https://openalex.org/I2800939219 |
| authorships[6].institutions[0].ror | https://ror.org/04j1n1c04 |
| authorships[6].institutions[0].type | facility |
| authorships[6].institutions[0].lineage | https://openalex.org/I2800939219, https://openalex.org/I4210110652 |
| authorships[6].institutions[0].country_code | JP |
| authorships[6].institutions[0].display_name | RIKEN Center for Brain Science |
| authorships[6].institutions[1].id | https://openalex.org/I3019271933 |
| authorships[6].institutions[1].ror | https://ror.org/0102mm775 |
| authorships[6].institutions[1].type | education |
| authorships[6].institutions[1].lineage | https://openalex.org/I3019271933 |
| authorships[6].institutions[1].country_code | PL |
| authorships[6].institutions[1].display_name | Nicolaus Copernicus University |
| authorships[6].institutions[2].id | https://openalex.org/I125989756 |
| authorships[6].institutions[2].ror | https://ror.org/03f9nc143 |
| authorships[6].institutions[2].type | education |
| authorships[6].institutions[2].lineage | https://openalex.org/I125989756 |
| authorships[6].institutions[2].country_code | RU |
| authorships[6].institutions[2].display_name | Skolkovo Institute of Science and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Andrzej Cichocki |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Nicolaus Copernicus University (UMK), Torun, Poland, RIKEN Brain Science Institute, Wako, Japan, Skolkovo Institute of Science and Technology (SKOLTECH), Moscow, Russia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Classification Framework Using the Graph Representations of Electroencephalogram for Motor Imagery Based Brain-Computer Interface |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10429 |
| primary_topic.field.id | https://openalex.org/fields/28 |
| primary_topic.field.display_name | Neuroscience |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2805 |
| primary_topic.subfield.display_name | Cognitive Neuroscience |
| primary_topic.display_name | EEG and Brain-Computer Interfaces |
| related_works | https://openalex.org/W1977940006, https://openalex.org/W2947925238, https://openalex.org/W2887556756, https://openalex.org/W195417223, https://openalex.org/W2951110009, https://openalex.org/W1513407214, https://openalex.org/W1984377984, https://openalex.org/W2510077457, https://openalex.org/W1961545574, https://openalex.org/W3045772920 |
| cited_by_count | 50 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 18 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 12 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 12 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 8 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1109/tnsre.2021.3139095 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S98183460 |
| best_oa_location.source.issn | 1534-4320, 1558-0210 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1534-4320 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| best_oa_location.landing_page_url | https://doi.org/10.1109/tnsre.2021.3139095 |
| primary_location.id | doi:10.1109/tnsre.2021.3139095 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S98183460 |
| primary_location.source.issn | 1534-4320, 1558-0210 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1534-4320 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | other-oa |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/7333/9695946/09664515.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/other-oa |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Neural Systems and Rehabilitation Engineering |
| primary_location.landing_page_url | https://doi.org/10.1109/tnsre.2021.3139095 |
| publication_date | 2021-12-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2151669316, https://openalex.org/W2162800060, https://openalex.org/W6745537798, https://openalex.org/W2091930044, https://openalex.org/W2097645701, https://openalex.org/W6684050148, https://openalex.org/W2163756472, https://openalex.org/W2128404967, https://openalex.org/W1970070014, https://openalex.org/W6713582119, https://openalex.org/W6754929296, https://openalex.org/W6763130635, https://openalex.org/W3019900571, https://openalex.org/W2041782669, https://openalex.org/W2998959557, https://openalex.org/W2911417109, https://openalex.org/W2167822639, https://openalex.org/W2119185655, https://openalex.org/W1970989973, https://openalex.org/W2138378368, https://openalex.org/W2031498849, https://openalex.org/W2508284143, https://openalex.org/W2006090510, https://openalex.org/W2288754303, https://openalex.org/W2767333869, https://openalex.org/W6726873649, https://openalex.org/W2990200213, https://openalex.org/W3129685057, https://openalex.org/W2963283402, https://openalex.org/W2792724009, https://openalex.org/W6792901745, https://openalex.org/W3110100085, https://openalex.org/W2912746303, https://openalex.org/W2790114788, https://openalex.org/W2792687613, https://openalex.org/W1987206804, https://openalex.org/W2991224771, https://openalex.org/W2991183506, https://openalex.org/W2057072986, https://openalex.org/W1980090921, https://openalex.org/W2947528994, https://openalex.org/W2756928350, https://openalex.org/W2798673040, https://openalex.org/W4211091012, https://openalex.org/W3007612421, https://openalex.org/W2006082701, https://openalex.org/W2765815105, https://openalex.org/W2996605177, https://openalex.org/W2960585436, https://openalex.org/W2499242800, https://openalex.org/W2142280324, https://openalex.org/W3080395176, https://openalex.org/W2078087619, https://openalex.org/W2020253000, https://openalex.org/W2202183074, https://openalex.org/W2354225344, https://openalex.org/W2623656704, https://openalex.org/W1969878365, https://openalex.org/W2905915376, https://openalex.org/W2559463885, https://openalex.org/W4297733535, https://openalex.org/W2162833336, https://openalex.org/W2945572065, https://openalex.org/W3143381542, https://openalex.org/W2964145825, https://openalex.org/W2964015378, https://openalex.org/W3102455230, https://openalex.org/W2962711740, https://openalex.org/W3124042536 |
| referenced_works_count | 69 |
| abstract_inverted_index.A | 69 |
| abstract_inverted_index.a | 12, 28, 37, 80, 88, 92, 155, 180 |
| abstract_inverted_index.1, | 129 |
| abstract_inverted_index.2, | 133 |
| abstract_inverted_index.3, | 137 |
| abstract_inverted_index.4) | 142 |
| abstract_inverted_index.MI | 24, 39 |
| abstract_inverted_index.We | 35, 102 |
| abstract_inverted_index.as | 11 |
| abstract_inverted_index.in | 60, 99, 122, 184, 204 |
| abstract_inverted_index.is | 26, 75, 165, 179 |
| abstract_inverted_index.it | 172 |
| abstract_inverted_index.of | 45, 159 |
| abstract_inverted_index.on | 43, 107 |
| abstract_inverted_index.to | 78, 91, 167 |
| abstract_inverted_index.we | 170 |
| abstract_inverted_index.1). | 150 |
| abstract_inverted_index.BCI | 33 |
| abstract_inverted_index.Our | 151, 194 |
| abstract_inverted_index.The | 0 |
| abstract_inverted_index.and | 51, 110, 138, 143 |
| abstract_inverted_index.are | 63 |
| abstract_inverted_index.can | 83 |
| abstract_inverted_index.for | 95, 127, 131, 135, 140, 148, 200 |
| abstract_inverted_index.has | 197 |
| abstract_inverted_index.low | 19 |
| abstract_inverted_index.our | 104, 115 |
| abstract_inverted_index.the | 18, 61, 85, 100, 111 |
| abstract_inverted_index.to. | 173 |
| abstract_inverted_index.(MI) | 3 |
| abstract_inverted_index.0.88 | 160 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.four | 108 |
| abstract_inverted_index.from | 65, 87 |
| abstract_inverted_index.have | 8 |
| abstract_inverted_index.high | 119 |
| abstract_inverted_index.mean | 156 |
| abstract_inverted_index.nine | 162 |
| abstract_inverted_index.show | 113 |
| abstract_inverted_index.that | 114, 177 |
| abstract_inverted_index.then | 76 |
| abstract_inverted_index.used | 77 |
| abstract_inverted_index.when | 30 |
| abstract_inverted_index.with | 23 |
| abstract_inverted_index.80.2% | 139 |
| abstract_inverted_index.93.4% | 130 |
| abstract_inverted_index.96.5% | 134 |
| abstract_inverted_index.Kappa | 157 |
| abstract_inverted_index.These | 174 |
| abstract_inverted_index.based | 4, 42 |
| abstract_inverted_index.brain | 49, 62 |
| abstract_inverted_index.build | 79 |
| abstract_inverted_index.graph | 52, 70, 86 |
| abstract_inverted_index.great | 198 |
| abstract_inverted_index.local | 57, 181 |
| abstract_inverted_index.model | 41, 72 |
| abstract_inverted_index.motor | 1, 191, 201 |
| abstract_inverted_index.novel | 38 |
| abstract_inverted_index.other | 168 |
| abstract_inverted_index.still | 27 |
| abstract_inverted_index.tasks | 25, 125, 146 |
| abstract_inverted_index.there | 178 |
| abstract_inverted_index.under | 189 |
| abstract_inverted_index.value | 158 |
| abstract_inverted_index.which | 82, 164 |
| abstract_inverted_index.(92.8% | 126 |
| abstract_inverted_index.(BCIs) | 7 |
| abstract_inverted_index.across | 161 |
| abstract_inverted_index.called | 73 |
| abstract_inverted_index.future | 205 |
| abstract_inverted_index.graph. | 101 |
| abstract_inverted_index.graphs | 187 |
| abstract_inverted_index.method | 106, 117, 153, 196 |
| abstract_inverted_index.motifs | 55 |
| abstract_inverted_index.tasks. | 193 |
| abstract_inverted_index.vector | 94 |
| abstract_inverted_index.(90.33% | 147 |
| abstract_inverted_index.between | 48 |
| abstract_inverted_index.convert | 84 |
| abstract_inverted_index.dataset | 128, 132, 136, 141, 149 |
| abstract_inverted_index.graphs. | 68 |
| abstract_inverted_index.imagery | 2, 192, 202 |
| abstract_inverted_index.methods | 169 |
| abstract_inverted_index.network | 58 |
| abstract_inverted_index.propose | 36 |
| abstract_inverted_index.regions | 50 |
| abstract_inverted_index.results | 112, 175 |
| abstract_inverted_index.theory. | 53 |
| abstract_inverted_index.Ego-CNNs | 74 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 21 |
| abstract_inverted_index.achieves | 154 |
| abstract_inverted_index.building | 31 |
| abstract_inverted_index.compared | 171 |
| abstract_inverted_index.critical | 97 |
| abstract_inverted_index.indicate | 176 |
| abstract_inverted_index.physical | 14 |
| abstract_inverted_index.produces | 118 |
| abstract_inverted_index.proposed | 10, 105, 116, 152, 195 |
| abstract_inverted_index.studies. | 206 |
| abstract_inverted_index.superior | 166 |
| abstract_inverted_index.systems. | 34 |
| abstract_inverted_index.validate | 103 |
| abstract_inverted_index.challenge | 29 |
| abstract_inverted_index.datasets, | 109 |
| abstract_inverted_index.detecting | 96 |
| abstract_inverted_index.different | 190 |
| abstract_inverted_index.effective | 32 |
| abstract_inverted_index.embedding | 71 |
| abstract_inverted_index.extracted | 64, 188 |
| abstract_inverted_index.potential | 13, 199 |
| abstract_inverted_index.structure | 98 |
| abstract_inverted_index.two-class | 123 |
| abstract_inverted_index.accuracies | 121 |
| abstract_inverted_index.achievable | 22 |
| abstract_inverted_index.describing | 56 |
| abstract_inverted_index.difference | 183 |
| abstract_inverted_index.functional | 46, 66, 185 |
| abstract_inverted_index.interfaces | 6 |
| abstract_inverted_index.multiclass | 144 |
| abstract_inverted_index.structural | 89, 182 |
| abstract_inverted_index.structures | 59 |
| abstract_inverted_index.classifier, | 81 |
| abstract_inverted_index.measurement | 44 |
| abstract_inverted_index.technology. | 16 |
| abstract_inverted_index.connectivity | 47, 67, 186 |
| abstract_inverted_index.Specifically, | 54 |
| abstract_inverted_index.participants, | 163 |
| abstract_inverted_index.brain-computer | 5 |
| abstract_inverted_index.classification | 20, 40, 120, 124, 145, 203 |
| abstract_inverted_index.rehabilitation | 15 |
| abstract_inverted_index.representation | 90 |
| abstract_inverted_index.fixed-dimensional | 93 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 5 |
| institutions_distinct_count | 7 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.9451519 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |