A Novel Deep Reinforcement Learning Framework for Energy Management and Prediction in Smart Cities Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.1111/exsy.70155
Machine learning and deep learning algorithms have recently been progressively integrated into business intelligence for smart city management. Predicting smart city energy utilisation is crucial for sustainable growth and resource efficiency and become essential due to the growing challenges and demands on raw energy resources. Traditional methods for forecasting energy demand were manual and often yielded poor results. However, advancements in machine learning and deep learning have introduced new approaches to energy management within the context of business intelligence. This research presents an advanced prolonged deep reinforcement learning model incorporating Monte Carlo learning, which is compared against the convolutional neural network approach using a public sector energy dataset, including steel industry energy utilisation. The study evaluates the performance of the proposed prolonged deep reinforcement learning and convolutional neural network models based on key metrics such as accuracy and mean absolute percentage error. Data analysis was conducted using the SPSS tool, encompassing graphical illustrations, group statistics, and independent tabulations. Results indicate that the prolonged deep reinforcement learning model achieved a prediction accuracy of 96.613% and a mean absolute percentage error of 3.387%. Consequently, this efficient prediction model is well‐suited for addressing the future energy demands of smart cities through business intelligence.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1111/exsy.70155
- https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155
- OA Status
- bronze
- References
- 33
- OpenAlex ID
- https://openalex.org/W4415646670
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415646670Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1111/exsy.70155Digital Object Identifier
- Title
-
A Novel Deep Reinforcement Learning Framework for Energy Management and Prediction in Smart CitiesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-28Full publication date if available
- Authors
-
Taher Al‐Shehari, Malathi Selvaraj, M. Adimoolam, K. Maithili, Nasser A Alsadhan, Mueen UddinList of authors in order
- Landing page
-
https://doi.org/10.1111/exsy.70155Publisher landing page
- PDF URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
33Number of works referenced by this work
Full payload
| id | https://openalex.org/W4415646670 |
|---|---|
| doi | https://doi.org/10.1111/exsy.70155 |
| ids.doi | https://doi.org/10.1111/exsy.70155 |
| ids.openalex | https://openalex.org/W4415646670 |
| fwci | |
| type | article |
| title | A Novel Deep Reinforcement Learning Framework for Energy Management and Prediction in Smart Cities |
| biblio.issue | 12 |
| biblio.volume | 42 |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list.value | 3860 |
| apc_list.currency | USD |
| apc_list.value_usd | 3860 |
| apc_paid | |
| language | en |
| locations[0].id | doi:10.1111/exsy.70155 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S72232612 |
| locations[0].source.issn | 0266-4720, 1468-0394 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0266-4720 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Expert Systems |
| locations[0].source.host_organization | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_name | Wiley |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320595 |
| locations[0].source.host_organization_lineage_names | Wiley |
| locations[0].license | |
| locations[0].pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Expert Systems |
| locations[0].landing_page_url | https://doi.org/10.1111/exsy.70155 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5069238097 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9783-919X |
| authorships[0].author.display_name | Taher Al‐Shehari |
| authorships[0].countries | SA |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[0].affiliations[0].raw_affiliation_string | Computer Skills, Department of Self‐Development Skill, Common First Year Deanship King Saud University Riyadh Saudi Arabia |
| authorships[0].institutions[0].id | https://openalex.org/I28022161 |
| authorships[0].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[0].institutions[0].country_code | SA |
| authorships[0].institutions[0].display_name | King Saud University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Taher Al‐Shehari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Computer Skills, Department of Self‐Development Skill, Common First Year Deanship King Saud University Riyadh Saudi Arabia |
| authorships[1].author.id | https://openalex.org/A5104092291 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Malathi Selvaraj |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Electronics and Communication Engineering Sri Venkateswara College of Engineering, Sriperumbudur Chennai India |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | S. R. Malathi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Electronics and Communication Engineering Sri Venkateswara College of Engineering, Sriperumbudur Chennai India |
| authorships[2].author.id | https://openalex.org/A5030082231 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | M. Adimoolam |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Engineering Government Polytechnic College Tiruvallur India |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | M. Adimoolam |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Engineering Government Polytechnic College Tiruvallur India |
| authorships[3].author.id | https://openalex.org/A5007735772 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | K. Maithili |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210134386 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering KG Reddy College of Engineering and Technology Hyderabad Telangana India |
| authorships[3].institutions[0].id | https://openalex.org/I4210134386 |
| authorships[3].institutions[0].ror | https://ror.org/04p93kz40 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210134386 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | G Pulla Reddy Dental College & Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | K. Maithili |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science and Engineering KG Reddy College of Engineering and Technology Hyderabad Telangana India |
| authorships[4].author.id | https://openalex.org/A5113943703 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Nasser A Alsadhan |
| authorships[4].countries | SA |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I28022161 |
| authorships[4].affiliations[0].raw_affiliation_string | Computer Science Department, College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia |
| authorships[4].institutions[0].id | https://openalex.org/I28022161 |
| authorships[4].institutions[0].ror | https://ror.org/02f81g417 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I28022161 |
| authorships[4].institutions[0].country_code | SA |
| authorships[4].institutions[0].display_name | King Saud University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Nasser A. Alsadhan |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Computer Science Department, College of Computer and Information Sciences King Saud University Riyadh Saudi Arabia |
| authorships[5].author.id | https://openalex.org/A5009473482 |
| authorships[5].author.orcid | https://orcid.org/0000-0003-1919-3407 |
| authorships[5].author.display_name | Mueen Uddin |
| authorships[5].countries | QA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210105992 |
| authorships[5].affiliations[0].raw_affiliation_string | College of Computing and IT University of Doha for Science and Technology Doha Qatar |
| authorships[5].institutions[0].id | https://openalex.org/I4210105992 |
| authorships[5].institutions[0].ror | https://ror.org/01gshyb58 |
| authorships[5].institutions[0].type | archive |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210105992 |
| authorships[5].institutions[0].country_code | QA |
| authorships[5].institutions[0].display_name | Qatar Science and Technology Park |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Mueen Uddin |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | College of Computing and IT University of Doha for Science and Technology Doha Qatar |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-29T00:00:00 |
| display_name | A Novel Deep Reinforcement Learning Framework for Energy Management and Prediction in Smart Cities |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1111/exsy.70155 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S72232612 |
| best_oa_location.source.issn | 0266-4720, 1468-0394 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0266-4720 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Expert Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_name | Wiley |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| best_oa_location.source.host_organization_lineage_names | Wiley |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Expert Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1111/exsy.70155 |
| primary_location.id | doi:10.1111/exsy.70155 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S72232612 |
| primary_location.source.issn | 0266-4720, 1468-0394 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0266-4720 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Expert Systems |
| primary_location.source.host_organization | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_name | Wiley |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320595 |
| primary_location.source.host_organization_lineage_names | Wiley |
| primary_location.license | |
| primary_location.pdf_url | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1111/exsy.70155 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Expert Systems |
| primary_location.landing_page_url | https://doi.org/10.1111/exsy.70155 |
| publication_date | 2025-10-28 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W4200281205, https://openalex.org/W4212863562, https://openalex.org/W4388509206, https://openalex.org/W4319300505, https://openalex.org/W4283806145, https://openalex.org/W4297509988, https://openalex.org/W4385190987, https://openalex.org/W2795630024, https://openalex.org/W4317740385, https://openalex.org/W4200159608, https://openalex.org/W2982257169, https://openalex.org/W4390122262, https://openalex.org/W2966982635, https://openalex.org/W2754252319, https://openalex.org/W4293232851, https://openalex.org/W4224943380, https://openalex.org/W4220757753, https://openalex.org/W4223493732, https://openalex.org/W4213015424, https://openalex.org/W3118800910, https://openalex.org/W3207924781, https://openalex.org/W3012214319, https://openalex.org/W4225135474, https://openalex.org/W4400943616, https://openalex.org/W3021152881, https://openalex.org/W3088296722, https://openalex.org/W3010335229, https://openalex.org/W4309742830, https://openalex.org/W4280585873, https://openalex.org/W4224951362, https://openalex.org/W4281738535, https://openalex.org/W4402373592, https://openalex.org/W2988290754 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 104, 169, 175 |
| abstract_inverted_index.an | 83 |
| abstract_inverted_index.as | 136 |
| abstract_inverted_index.in | 61 |
| abstract_inverted_index.is | 24, 95, 187 |
| abstract_inverted_index.of | 77, 119, 172, 180, 195 |
| abstract_inverted_index.on | 42, 132 |
| abstract_inverted_index.to | 36, 71 |
| abstract_inverted_index.The | 114 |
| abstract_inverted_index.and | 3, 29, 32, 40, 54, 64, 126, 138, 156, 174 |
| abstract_inverted_index.due | 35 |
| abstract_inverted_index.for | 15, 26, 48, 189 |
| abstract_inverted_index.key | 133 |
| abstract_inverted_index.new | 69 |
| abstract_inverted_index.raw | 43 |
| abstract_inverted_index.the | 37, 75, 98, 117, 120, 148, 162, 191 |
| abstract_inverted_index.was | 145 |
| abstract_inverted_index.Data | 143 |
| abstract_inverted_index.SPSS | 149 |
| abstract_inverted_index.This | 80 |
| abstract_inverted_index.been | 9 |
| abstract_inverted_index.city | 17, 21 |
| abstract_inverted_index.deep | 4, 65, 86, 123, 164 |
| abstract_inverted_index.have | 7, 67 |
| abstract_inverted_index.into | 12 |
| abstract_inverted_index.mean | 139, 176 |
| abstract_inverted_index.poor | 57 |
| abstract_inverted_index.such | 135 |
| abstract_inverted_index.that | 161 |
| abstract_inverted_index.this | 183 |
| abstract_inverted_index.were | 52 |
| abstract_inverted_index.Carlo | 92 |
| abstract_inverted_index.Monte | 91 |
| abstract_inverted_index.based | 131 |
| abstract_inverted_index.error | 179 |
| abstract_inverted_index.group | 154 |
| abstract_inverted_index.model | 89, 167, 186 |
| abstract_inverted_index.often | 55 |
| abstract_inverted_index.smart | 16, 20, 196 |
| abstract_inverted_index.steel | 110 |
| abstract_inverted_index.study | 115 |
| abstract_inverted_index.tool, | 150 |
| abstract_inverted_index.using | 103, 147 |
| abstract_inverted_index.which | 94 |
| abstract_inverted_index.become | 33 |
| abstract_inverted_index.cities | 197 |
| abstract_inverted_index.demand | 51 |
| abstract_inverted_index.energy | 22, 44, 50, 72, 107, 112, 193 |
| abstract_inverted_index.error. | 142 |
| abstract_inverted_index.future | 192 |
| abstract_inverted_index.growth | 28 |
| abstract_inverted_index.manual | 53 |
| abstract_inverted_index.models | 130 |
| abstract_inverted_index.neural | 100, 128 |
| abstract_inverted_index.public | 105 |
| abstract_inverted_index.sector | 106 |
| abstract_inverted_index.within | 74 |
| abstract_inverted_index.3.387%. | 181 |
| abstract_inverted_index.96.613% | 173 |
| abstract_inverted_index.Machine | 1 |
| abstract_inverted_index.Results | 159 |
| abstract_inverted_index.against | 97 |
| abstract_inverted_index.context | 76 |
| abstract_inverted_index.crucial | 25 |
| abstract_inverted_index.demands | 41, 194 |
| abstract_inverted_index.growing | 38 |
| abstract_inverted_index.machine | 62 |
| abstract_inverted_index.methods | 47 |
| abstract_inverted_index.metrics | 134 |
| abstract_inverted_index.network | 101, 129 |
| abstract_inverted_index.through | 198 |
| abstract_inverted_index.yielded | 56 |
| abstract_inverted_index.ABSTRACT | 0 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.absolute | 140, 177 |
| abstract_inverted_index.accuracy | 137, 171 |
| abstract_inverted_index.achieved | 168 |
| abstract_inverted_index.advanced | 84 |
| abstract_inverted_index.analysis | 144 |
| abstract_inverted_index.approach | 102 |
| abstract_inverted_index.business | 13, 78, 199 |
| abstract_inverted_index.compared | 96 |
| abstract_inverted_index.dataset, | 108 |
| abstract_inverted_index.indicate | 160 |
| abstract_inverted_index.industry | 111 |
| abstract_inverted_index.learning | 2, 5, 63, 66, 88, 125, 166 |
| abstract_inverted_index.presents | 82 |
| abstract_inverted_index.proposed | 121 |
| abstract_inverted_index.recently | 8 |
| abstract_inverted_index.research | 81 |
| abstract_inverted_index.resource | 30 |
| abstract_inverted_index.results. | 58 |
| abstract_inverted_index.conducted | 146 |
| abstract_inverted_index.efficient | 184 |
| abstract_inverted_index.essential | 34 |
| abstract_inverted_index.evaluates | 116 |
| abstract_inverted_index.graphical | 152 |
| abstract_inverted_index.including | 109 |
| abstract_inverted_index.learning, | 93 |
| abstract_inverted_index.prolonged | 85, 122, 163 |
| abstract_inverted_index.Predicting | 19 |
| abstract_inverted_index.addressing | 190 |
| abstract_inverted_index.algorithms | 6 |
| abstract_inverted_index.approaches | 70 |
| abstract_inverted_index.challenges | 39 |
| abstract_inverted_index.efficiency | 31 |
| abstract_inverted_index.integrated | 11 |
| abstract_inverted_index.introduced | 68 |
| abstract_inverted_index.management | 73 |
| abstract_inverted_index.percentage | 141, 178 |
| abstract_inverted_index.prediction | 170, 185 |
| abstract_inverted_index.resources. | 45 |
| abstract_inverted_index.Traditional | 46 |
| abstract_inverted_index.forecasting | 49 |
| abstract_inverted_index.independent | 157 |
| abstract_inverted_index.management. | 18 |
| abstract_inverted_index.performance | 118 |
| abstract_inverted_index.statistics, | 155 |
| abstract_inverted_index.sustainable | 27 |
| abstract_inverted_index.utilisation | 23 |
| abstract_inverted_index.advancements | 60 |
| abstract_inverted_index.encompassing | 151 |
| abstract_inverted_index.intelligence | 14 |
| abstract_inverted_index.tabulations. | 158 |
| abstract_inverted_index.utilisation. | 113 |
| abstract_inverted_index.Consequently, | 182 |
| abstract_inverted_index.convolutional | 99, 127 |
| abstract_inverted_index.incorporating | 90 |
| abstract_inverted_index.intelligence. | 79, 200 |
| abstract_inverted_index.progressively | 10 |
| abstract_inverted_index.reinforcement | 87, 124, 165 |
| abstract_inverted_index.well‐suited | 188 |
| abstract_inverted_index.illustrations, | 153 |
| cited_by_percentile_year | |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile |