A Novel Detection Method Using YOLOv5 for Vehicle Target under Complex Situation Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.18280/ts.390407
Aiming at the problem of low accuracy of vehicle image detection and recognition caused by low visibility in foggy weather, an improved YOLOv5 algorithm is proposed. This algorithm adjusts the brightness and contrast of the image by adding the improved adaptive histogram equalization method to the image preprocessing, highlights the detailed information of vehicle image signs, and changes the backbone network standard convolution mode to the depth separable convolution method for model lightweight processing. By constructing the corresponding vehicle target detection data set, this paper is superior to the object detection model commonly used on the public data set in terms of performance and effectiveness, and draws the following conclusion from the comparison results of ablation experiments, the improved algorithm improves the detection accuracy of a single image and reduces the processing time.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.18280/ts.390407
- https://www.iieta.org/download/file/fid/81596
- OA Status
- bronze
- Cited By
- 7
- References
- 14
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4298009709
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4298009709Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.18280/ts.390407Digital Object Identifier
- Title
-
A Novel Detection Method Using YOLOv5 for Vehicle Target under Complex SituationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-08-31Full publication date if available
- Authors
-
Yue Zhai, Weijia Zeng, Nan LiList of authors in order
- Landing page
-
https://doi.org/10.18280/ts.390407Publisher landing page
- PDF URL
-
https://www.iieta.org/download/file/fid/81596Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
bronzeOpen access status per OpenAlex
- OA URL
-
https://www.iieta.org/download/file/fid/81596Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Computer vision, Preprocessor, Histogram equalization, Brightness, Visibility, Convolution (computer science), Adaptive histogram equalization, Set (abstract data type), Image (mathematics), Object detection, Pattern recognition (psychology), Histogram, Data set, Contrast (vision), Artificial neural network, Optics, Physics, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
7Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 1, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
14Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4298009709 |
|---|---|
| doi | https://doi.org/10.18280/ts.390407 |
| ids.doi | https://doi.org/10.18280/ts.390407 |
| ids.openalex | https://openalex.org/W4298009709 |
| fwci | 2.07619844 |
| type | article |
| title | A Novel Detection Method Using YOLOv5 for Vehicle Target under Complex Situation |
| biblio.issue | 4 |
| biblio.volume | 39 |
| biblio.last_page | 1158 |
| biblio.first_page | 1153 |
| topics[0].id | https://openalex.org/T14139 |
| topics[0].field.id | https://openalex.org/fields/14 |
| topics[0].field.display_name | Business, Management and Accounting |
| topics[0].score | 0.7253999710083008 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1403 |
| topics[0].subfield.display_name | Business and International Management |
| topics[0].display_name | E-commerce and Technology Innovations |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.6765999794006348 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T14413 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.6704000234603882 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Advanced Technologies in Various Fields |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.6964244842529297 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6910320520401001 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5954605937004089 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C34736171 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5783332586288452 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[3].display_name | Preprocessor |
| concepts[4].id | https://openalex.org/C136943445 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5754910707473755 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1970240 |
| concepts[4].display_name | Histogram equalization |
| concepts[5].id | https://openalex.org/C125245961 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5705325603485107 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q221656 |
| concepts[5].display_name | Brightness |
| concepts[6].id | https://openalex.org/C123403432 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5598964095115662 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q654068 |
| concepts[6].display_name | Visibility |
| concepts[7].id | https://openalex.org/C45347329 |
| concepts[7].level | 3 |
| concepts[7].score | 0.5127087831497192 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q5166604 |
| concepts[7].display_name | Convolution (computer science) |
| concepts[8].id | https://openalex.org/C30387639 |
| concepts[8].level | 5 |
| concepts[8].score | 0.5022964477539062 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q4680744 |
| concepts[8].display_name | Adaptive histogram equalization |
| concepts[9].id | https://openalex.org/C177264268 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48206406831741333 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[9].display_name | Set (abstract data type) |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4723416566848755 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C2776151529 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4659842848777771 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[11].display_name | Object detection |
| concepts[12].id | https://openalex.org/C153180895 |
| concepts[12].level | 2 |
| concepts[12].score | 0.46019721031188965 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[12].display_name | Pattern recognition (psychology) |
| concepts[13].id | https://openalex.org/C53533937 |
| concepts[13].level | 3 |
| concepts[13].score | 0.4458853006362915 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[13].display_name | Histogram |
| concepts[14].id | https://openalex.org/C58489278 |
| concepts[14].level | 2 |
| concepts[14].score | 0.43078985810279846 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q1172284 |
| concepts[14].display_name | Data set |
| concepts[15].id | https://openalex.org/C2776502983 |
| concepts[15].level | 2 |
| concepts[15].score | 0.412895143032074 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q690182 |
| concepts[15].display_name | Contrast (vision) |
| concepts[16].id | https://openalex.org/C50644808 |
| concepts[16].level | 2 |
| concepts[16].score | 0.12623518705368042 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[16].display_name | Artificial neural network |
| concepts[17].id | https://openalex.org/C120665830 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[17].display_name | Optics |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C199360897 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[19].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.6964244842529297 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.6910320520401001 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.5954605937004089 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.5783332586288452 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/histogram-equalization |
| keywords[4].score | 0.5754910707473755 |
| keywords[4].display_name | Histogram equalization |
| keywords[5].id | https://openalex.org/keywords/brightness |
| keywords[5].score | 0.5705325603485107 |
| keywords[5].display_name | Brightness |
| keywords[6].id | https://openalex.org/keywords/visibility |
| keywords[6].score | 0.5598964095115662 |
| keywords[6].display_name | Visibility |
| keywords[7].id | https://openalex.org/keywords/convolution |
| keywords[7].score | 0.5127087831497192 |
| keywords[7].display_name | Convolution (computer science) |
| keywords[8].id | https://openalex.org/keywords/adaptive-histogram-equalization |
| keywords[8].score | 0.5022964477539062 |
| keywords[8].display_name | Adaptive histogram equalization |
| keywords[9].id | https://openalex.org/keywords/set |
| keywords[9].score | 0.48206406831741333 |
| keywords[9].display_name | Set (abstract data type) |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.4723416566848755 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/object-detection |
| keywords[11].score | 0.4659842848777771 |
| keywords[11].display_name | Object detection |
| keywords[12].id | https://openalex.org/keywords/pattern-recognition |
| keywords[12].score | 0.46019721031188965 |
| keywords[12].display_name | Pattern recognition (psychology) |
| keywords[13].id | https://openalex.org/keywords/histogram |
| keywords[13].score | 0.4458853006362915 |
| keywords[13].display_name | Histogram |
| keywords[14].id | https://openalex.org/keywords/data-set |
| keywords[14].score | 0.43078985810279846 |
| keywords[14].display_name | Data set |
| keywords[15].id | https://openalex.org/keywords/contrast |
| keywords[15].score | 0.412895143032074 |
| keywords[15].display_name | Contrast (vision) |
| keywords[16].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[16].score | 0.12623518705368042 |
| keywords[16].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.18280/ts.390407 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S120060627 |
| locations[0].source.issn | 0765-0019, 1958-5608 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0765-0019 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Traitement du signal |
| locations[0].source.host_organization | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_name | International Information and Engineering Technology Association |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310312982 |
| locations[0].source.host_organization_lineage_names | International Information and Engineering Technology Association |
| locations[0].license | |
| locations[0].pdf_url | https://www.iieta.org/download/file/fid/81596 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Traitement du Signal |
| locations[0].landing_page_url | https://doi.org/10.18280/ts.390407 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100754471 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-5623-8199 |
| authorships[0].author.display_name | Yue Zhai |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[0].affiliations[0].raw_affiliation_string | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| authorships[0].institutions[0].id | https://openalex.org/I27357992 |
| authorships[0].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian University of Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yue Zhai |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| authorships[1].author.id | https://openalex.org/A5103812984 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Weijia Zeng |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| authorships[1].institutions[0].id | https://openalex.org/I27357992 |
| authorships[1].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian University of Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Weijia Zeng |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| authorships[2].author.id | https://openalex.org/A5100341073 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7272-4273 |
| authorships[2].author.display_name | Nan Li |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I27357992 |
| authorships[2].affiliations[0].raw_affiliation_string | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| authorships[2].institutions[0].id | https://openalex.org/I27357992 |
| authorships[2].institutions[0].ror | https://ror.org/023hj5876 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I27357992 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dalian University of Technology |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Nan Li |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Institute of Digital Technology, Dalian University of Science and Technology, Dalian 116021, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.iieta.org/download/file/fid/81596 |
| open_access.oa_status | bronze |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Detection Method Using YOLOv5 for Vehicle Target under Complex Situation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T14139 |
| primary_topic.field.id | https://openalex.org/fields/14 |
| primary_topic.field.display_name | Business, Management and Accounting |
| primary_topic.score | 0.7253999710083008 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1403 |
| primary_topic.subfield.display_name | Business and International Management |
| primary_topic.display_name | E-commerce and Technology Innovations |
| related_works | https://openalex.org/W1903099452, https://openalex.org/W1964281796, https://openalex.org/W2382779682, https://openalex.org/W2905424738, https://openalex.org/W2042165300, https://openalex.org/W2912345866, https://openalex.org/W1979205888, https://openalex.org/W2161780435, https://openalex.org/W2035413902, https://openalex.org/W1983610137 |
| cited_by_count | 7 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.18280/ts.390407 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S120060627 |
| best_oa_location.source.issn | 0765-0019, 1958-5608 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0765-0019 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Traitement du signal |
| best_oa_location.source.host_organization | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_name | International Information and Engineering Technology Association |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| best_oa_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.iieta.org/download/file/fid/81596 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Traitement du Signal |
| best_oa_location.landing_page_url | https://doi.org/10.18280/ts.390407 |
| primary_location.id | doi:10.18280/ts.390407 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S120060627 |
| primary_location.source.issn | 0765-0019, 1958-5608 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0765-0019 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Traitement du signal |
| primary_location.source.host_organization | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_name | International Information and Engineering Technology Association |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310312982 |
| primary_location.source.host_organization_lineage_names | International Information and Engineering Technology Association |
| primary_location.license | |
| primary_location.pdf_url | https://www.iieta.org/download/file/fid/81596 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Traitement du Signal |
| primary_location.landing_page_url | https://doi.org/10.18280/ts.390407 |
| publication_date | 2022-08-31 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W1970864157, https://openalex.org/W3162962764, https://openalex.org/W3164172201, https://openalex.org/W2803404567, https://openalex.org/W2076135993, https://openalex.org/W3116025892, https://openalex.org/W1538041611, https://openalex.org/W2975528882, https://openalex.org/W94381535, https://openalex.org/W3121852920, https://openalex.org/W241841566, https://openalex.org/W2333288454, https://openalex.org/W2190356687, https://openalex.org/W627282504 |
| referenced_works_count | 14 |
| abstract_inverted_index.a | 125 |
| abstract_inverted_index.By | 74 |
| abstract_inverted_index.an | 20 |
| abstract_inverted_index.at | 1 |
| abstract_inverted_index.by | 14, 36 |
| abstract_inverted_index.in | 17, 99 |
| abstract_inverted_index.is | 24, 85 |
| abstract_inverted_index.of | 4, 7, 33, 52, 101, 114, 124 |
| abstract_inverted_index.on | 94 |
| abstract_inverted_index.to | 44, 64, 87 |
| abstract_inverted_index.and | 11, 31, 56, 103, 105, 128 |
| abstract_inverted_index.for | 70 |
| abstract_inverted_index.low | 5, 15 |
| abstract_inverted_index.set | 98 |
| abstract_inverted_index.the | 2, 29, 34, 38, 45, 49, 58, 65, 76, 88, 95, 107, 111, 117, 121, 130 |
| abstract_inverted_index.This | 26 |
| abstract_inverted_index.data | 81, 97 |
| abstract_inverted_index.from | 110 |
| abstract_inverted_index.mode | 63 |
| abstract_inverted_index.set, | 82 |
| abstract_inverted_index.this | 83 |
| abstract_inverted_index.used | 93 |
| abstract_inverted_index.depth | 66 |
| abstract_inverted_index.draws | 106 |
| abstract_inverted_index.foggy | 18 |
| abstract_inverted_index.image | 9, 35, 46, 54, 127 |
| abstract_inverted_index.model | 71, 91 |
| abstract_inverted_index.paper | 84 |
| abstract_inverted_index.terms | 100 |
| abstract_inverted_index.time. | 132 |
| abstract_inverted_index.Aiming | 0 |
| abstract_inverted_index.YOLOv5 | 22 |
| abstract_inverted_index.adding | 37 |
| abstract_inverted_index.caused | 13 |
| abstract_inverted_index.method | 43, 69 |
| abstract_inverted_index.object | 89 |
| abstract_inverted_index.public | 96 |
| abstract_inverted_index.signs, | 55 |
| abstract_inverted_index.single | 126 |
| abstract_inverted_index.target | 79 |
| abstract_inverted_index.adjusts | 28 |
| abstract_inverted_index.changes | 57 |
| abstract_inverted_index.network | 60 |
| abstract_inverted_index.problem | 3 |
| abstract_inverted_index.reduces | 129 |
| abstract_inverted_index.results | 113 |
| abstract_inverted_index.vehicle | 8, 53, 78 |
| abstract_inverted_index.ablation | 115 |
| abstract_inverted_index.accuracy | 6, 123 |
| abstract_inverted_index.adaptive | 40 |
| abstract_inverted_index.backbone | 59 |
| abstract_inverted_index.commonly | 92 |
| abstract_inverted_index.contrast | 32 |
| abstract_inverted_index.detailed | 50 |
| abstract_inverted_index.improved | 21, 39, 118 |
| abstract_inverted_index.improves | 120 |
| abstract_inverted_index.standard | 61 |
| abstract_inverted_index.superior | 86 |
| abstract_inverted_index.weather, | 19 |
| abstract_inverted_index.algorithm | 23, 27, 119 |
| abstract_inverted_index.detection | 10, 80, 90, 122 |
| abstract_inverted_index.following | 108 |
| abstract_inverted_index.histogram | 41 |
| abstract_inverted_index.proposed. | 25 |
| abstract_inverted_index.separable | 67 |
| abstract_inverted_index.brightness | 30 |
| abstract_inverted_index.comparison | 112 |
| abstract_inverted_index.conclusion | 109 |
| abstract_inverted_index.highlights | 48 |
| abstract_inverted_index.processing | 131 |
| abstract_inverted_index.visibility | 16 |
| abstract_inverted_index.convolution | 62, 68 |
| abstract_inverted_index.information | 51 |
| abstract_inverted_index.lightweight | 72 |
| abstract_inverted_index.performance | 102 |
| abstract_inverted_index.processing. | 73 |
| abstract_inverted_index.recognition | 12 |
| abstract_inverted_index.constructing | 75 |
| abstract_inverted_index.equalization | 42 |
| abstract_inverted_index.experiments, | 116 |
| abstract_inverted_index.corresponding | 77 |
| abstract_inverted_index.effectiveness, | 104 |
| abstract_inverted_index.preprocessing, | 47 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.6800000071525574 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.86484873 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |