A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/tevc.2019.2958075
To promote research on dynamic constrained multiobjective optimization, we first propose a group of generic test problems with challenging characteristics, including different modes of the true Pareto front (e.g., convexity-concavity and connectedness-disconnectedness) and the changing feasible region. Subsequently, motivated by the challenges presented by dynamism and constraints, we design a dynamic constrained multiobjective optimization algorithm with a nondominated solution selection operator, a mating selection strategy, a population selection operator, a change detection method, and a change response strategy. The designed nondominated solution selection operator can obtain a nondominated population with diversity when the environment changes. The mating selection strategy and population selection operator can adaptively handle infeasible solutions. If a change is detected, the proposed change response strategy reuses some portion of the old solutions in combination with randomly generated solutions to reinitialize the population, and a steady-state update method is designed to improve the retained previous solutions. The experimental results show that the proposed test problems can be used to clearly distinguish the performance of algorithms, and that the proposed algorithm is very competitive for solving dynamic constrained multiobjective optimization problems in comparison with state-of-the-art algorithms.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/tevc.2019.2958075
- OA Status
- gold
- Cited By
- 121
- References
- 70
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2995430847
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2995430847Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/tevc.2019.2958075Digital Object Identifier
- Title
-
A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization ProblemsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-12-10Full publication date if available
- Authors
-
Qingda Chen, Jinliang Ding, Shengxiang Yang, Tianyou ChaiList of authors in order
- Landing page
-
https://doi.org/10.1109/tevc.2019.2958075Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dora.dmu.ac.uk/bitstreams/981abbf4-c197-4dbd-8367-23847dc5d029/downloadDirect OA link when available
- Concepts
-
Mathematical optimization, Selection (genetic algorithm), Population, Evolutionary algorithm, Multi-objective optimization, Computer science, Operator (biology), Optimization problem, Evolutionary computation, Mathematics, Algorithm, Artificial intelligence, Demography, Chemistry, Biochemistry, Repressor, Transcription factor, Sociology, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
121Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 22, 2024: 33, 2023: 24, 2022: 20, 2021: 14Per-year citation counts (last 5 years)
- References (count)
-
70Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2995430847 |
|---|---|
| doi | https://doi.org/10.1109/tevc.2019.2958075 |
| ids.doi | https://doi.org/10.1109/tevc.2019.2958075 |
| ids.mag | 2995430847 |
| ids.openalex | https://openalex.org/W2995430847 |
| fwci | 8.99616971 |
| type | article |
| title | A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems |
| awards[0].id | https://openalex.org/G6465217458 |
| awards[0].funder_id | https://openalex.org/F4320335777 |
| awards[0].display_name | |
| awards[0].funder_award_id | 2018YFB1701104 |
| awards[0].funder_display_name | National Key Research and Development Program of China |
| awards[1].id | https://openalex.org/G5789780205 |
| awards[1].funder_id | https://openalex.org/F4320321001 |
| awards[1].display_name | |
| awards[1].funder_award_id | 61988101 |
| awards[1].funder_display_name | National Natural Science Foundation of China |
| awards[2].id | https://openalex.org/G7272473876 |
| awards[2].funder_id | https://openalex.org/F4320321001 |
| awards[2].display_name | |
| awards[2].funder_award_id | 61590922 |
| awards[2].funder_display_name | National Natural Science Foundation of China |
| awards[3].id | https://openalex.org/G5156944241 |
| awards[3].funder_id | https://openalex.org/F4320321001 |
| awards[3].display_name | |
| awards[3].funder_award_id | 61525302 |
| awards[3].funder_display_name | National Natural Science Foundation of China |
| awards[4].id | https://openalex.org/G7042882887 |
| awards[4].funder_id | https://openalex.org/F4320321001 |
| awards[4].display_name | |
| awards[4].funder_award_id | 61673331 |
| awards[4].funder_display_name | National Natural Science Foundation of China |
| biblio.issue | 4 |
| biblio.volume | 24 |
| biblio.last_page | 806 |
| biblio.first_page | 792 |
| topics[0].id | https://openalex.org/T10848 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1703 |
| topics[0].subfield.display_name | Computational Theory and Mathematics |
| topics[0].display_name | Advanced Multi-Objective Optimization Algorithms |
| topics[1].id | https://openalex.org/T10100 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Metaheuristic Optimization Algorithms Research |
| topics[2].id | https://openalex.org/T10791 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9864000082015991 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2207 |
| topics[2].subfield.display_name | Control and Systems Engineering |
| topics[2].display_name | Advanced Control Systems Optimization |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320335777 |
| funders[1].ror | |
| funders[1].display_name | National Key Research and Development Program of China |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126255220 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7357345223426819 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[0].display_name | Mathematical optimization |
| concepts[1].id | https://openalex.org/C81917197 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6421252489089966 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[1].display_name | Selection (genetic algorithm) |
| concepts[2].id | https://openalex.org/C2908647359 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6404768824577332 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2625603 |
| concepts[2].display_name | Population |
| concepts[3].id | https://openalex.org/C159149176 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6123644709587097 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q14489129 |
| concepts[3].display_name | Evolutionary algorithm |
| concepts[4].id | https://openalex.org/C68781425 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5562336444854736 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2052203 |
| concepts[4].display_name | Multi-objective optimization |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5487972497940063 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C17020691 |
| concepts[6].level | 5 |
| concepts[6].score | 0.5444257855415344 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[6].display_name | Operator (biology) |
| concepts[7].id | https://openalex.org/C137836250 |
| concepts[7].level | 2 |
| concepts[7].score | 0.45406267046928406 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q984063 |
| concepts[7].display_name | Optimization problem |
| concepts[8].id | https://openalex.org/C105902424 |
| concepts[8].level | 2 |
| concepts[8].score | 0.42085689306259155 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1197129 |
| concepts[8].display_name | Evolutionary computation |
| concepts[9].id | https://openalex.org/C33923547 |
| concepts[9].level | 0 |
| concepts[9].score | 0.3312796652317047 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[9].display_name | Mathematics |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3267848491668701 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1663554608821869 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C149923435 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q37732 |
| concepts[12].display_name | Demography |
| concepts[13].id | https://openalex.org/C185592680 |
| concepts[13].level | 0 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[13].display_name | Chemistry |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| concepts[15].id | https://openalex.org/C158448853 |
| concepts[15].level | 4 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[15].display_name | Repressor |
| concepts[16].id | https://openalex.org/C86339819 |
| concepts[16].level | 3 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[16].display_name | Transcription factor |
| concepts[17].id | https://openalex.org/C144024400 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[17].display_name | Sociology |
| concepts[18].id | https://openalex.org/C104317684 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[18].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[0].score | 0.7357345223426819 |
| keywords[0].display_name | Mathematical optimization |
| keywords[1].id | https://openalex.org/keywords/selection |
| keywords[1].score | 0.6421252489089966 |
| keywords[1].display_name | Selection (genetic algorithm) |
| keywords[2].id | https://openalex.org/keywords/population |
| keywords[2].score | 0.6404768824577332 |
| keywords[2].display_name | Population |
| keywords[3].id | https://openalex.org/keywords/evolutionary-algorithm |
| keywords[3].score | 0.6123644709587097 |
| keywords[3].display_name | Evolutionary algorithm |
| keywords[4].id | https://openalex.org/keywords/multi-objective-optimization |
| keywords[4].score | 0.5562336444854736 |
| keywords[4].display_name | Multi-objective optimization |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5487972497940063 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/operator |
| keywords[6].score | 0.5444257855415344 |
| keywords[6].display_name | Operator (biology) |
| keywords[7].id | https://openalex.org/keywords/optimization-problem |
| keywords[7].score | 0.45406267046928406 |
| keywords[7].display_name | Optimization problem |
| keywords[8].id | https://openalex.org/keywords/evolutionary-computation |
| keywords[8].score | 0.42085689306259155 |
| keywords[8].display_name | Evolutionary computation |
| keywords[9].id | https://openalex.org/keywords/mathematics |
| keywords[9].score | 0.3312796652317047 |
| keywords[9].display_name | Mathematics |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3267848491668701 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.1663554608821869 |
| keywords[11].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.1109/tevc.2019.2958075 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S93787993 |
| locations[0].source.issn | 1089-778X, 1941-0026 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1089-778X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEEE Transactions on Evolutionary Computation |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Transactions on Evolutionary Computation |
| locations[0].landing_page_url | https://doi.org/10.1109/tevc.2019.2958075 |
| locations[1].id | pmh:oai:dora.dmu.ac.uk:2086/18905 |
| locations[1].is_oa | True |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | https://dora.dmu.ac.uk/bitstreams/981abbf4-c197-4dbd-8367-23847dc5d029/download |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://dora.dmu.ac.uk/handle/2086/18905 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5055545427 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4465-8958 |
| authorships[0].author.display_name | Qingda Chen |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[0].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[0].institutions[0].id | https://openalex.org/I9224756 |
| authorships[0].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Northeastern University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingda Chen |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[1].author.id | https://openalex.org/A5022740106 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-3735-0672 |
| authorships[1].author.display_name | Jinliang Ding |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[1].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[1].institutions[0].id | https://openalex.org/I9224756 |
| authorships[1].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Northeastern University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jinliang Ding |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[2].author.id | https://openalex.org/A5040583251 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-7222-4917 |
| authorships[2].author.display_name | Shengxiang Yang |
| authorships[2].countries | CN, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I66943878 |
| authorships[2].affiliations[0].raw_affiliation_string | Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I9224756 |
| authorships[2].affiliations[1].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[2].institutions[0].id | https://openalex.org/I9224756 |
| authorships[2].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Northeastern University |
| authorships[2].institutions[1].id | https://openalex.org/I66943878 |
| authorships[2].institutions[1].ror | https://ror.org/0312pnr83 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I66943878 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | De Montfort University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shengxiang Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Centre for Computational Intelligence, School of Computer Science and Informatics, De Montfort University, Leicester, U.K., State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[3].author.id | https://openalex.org/A5042520521 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-4623-1483 |
| authorships[3].author.display_name | Tianyou Chai |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I9224756 |
| authorships[3].affiliations[0].raw_affiliation_string | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| authorships[3].institutions[0].id | https://openalex.org/I9224756 |
| authorships[3].institutions[0].ror | https://ror.org/03awzbc87 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I9224756 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Northeastern University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Tianyou Chai |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dora.dmu.ac.uk/bitstreams/981abbf4-c197-4dbd-8367-23847dc5d029/download |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Evolutionary Algorithm for Dynamic Constrained Multiobjective Optimization Problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10848 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1703 |
| primary_topic.subfield.display_name | Computational Theory and Mathematics |
| primary_topic.display_name | Advanced Multi-Objective Optimization Algorithms |
| related_works | https://openalex.org/W2751605210, https://openalex.org/W4297582752, https://openalex.org/W4285805405, https://openalex.org/W2977596624, https://openalex.org/W2145877535, https://openalex.org/W2744730182, https://openalex.org/W3151104768, https://openalex.org/W2419109832, https://openalex.org/W2391924736, https://openalex.org/W2022485595 |
| cited_by_count | 121 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 22 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 33 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 24 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 20 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 14 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 8 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:dora.dmu.ac.uk:2086/18905 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dora.dmu.ac.uk/bitstreams/981abbf4-c197-4dbd-8367-23847dc5d029/download |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://dora.dmu.ac.uk/handle/2086/18905 |
| primary_location.id | doi:10.1109/tevc.2019.2958075 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S93787993 |
| primary_location.source.issn | 1089-778X, 1941-0026 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1089-778X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEEE Transactions on Evolutionary Computation |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Transactions on Evolutionary Computation |
| primary_location.landing_page_url | https://doi.org/10.1109/tevc.2019.2958075 |
| publication_date | 2019-12-10 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W1501538060, https://openalex.org/W2554200989, https://openalex.org/W2154318708, https://openalex.org/W2559026249, https://openalex.org/W2022485595, https://openalex.org/W2049862811, https://openalex.org/W2571692374, https://openalex.org/W2735344514, https://openalex.org/W1662894842, https://openalex.org/W6676130308, https://openalex.org/W2122723707, https://openalex.org/W2809924137, https://openalex.org/W2054640518, https://openalex.org/W6633887987, https://openalex.org/W2886135323, https://openalex.org/W2343601797, https://openalex.org/W2142844925, https://openalex.org/W1574490530, https://openalex.org/W2583496274, https://openalex.org/W6761671956, https://openalex.org/W2962947982, https://openalex.org/W2766224505, https://openalex.org/W2808787830, https://openalex.org/W1974838664, https://openalex.org/W2071245253, https://openalex.org/W2082310572, https://openalex.org/W2348980703, https://openalex.org/W2151339633, https://openalex.org/W2805590776, https://openalex.org/W2148458253, https://openalex.org/W2919775045, https://openalex.org/W6608886761, https://openalex.org/W4252684946, https://openalex.org/W6632410151, https://openalex.org/W1976442029, https://openalex.org/W2147573707, https://openalex.org/W2005666100, https://openalex.org/W2152551290, https://openalex.org/W2126105956, https://openalex.org/W2170338867, https://openalex.org/W2143585163, https://openalex.org/W1968173975, https://openalex.org/W1998898918, https://openalex.org/W2484930447, https://openalex.org/W2519928844, https://openalex.org/W2343489328, https://openalex.org/W2344044752, https://openalex.org/W1912576130, https://openalex.org/W1565075560, https://openalex.org/W2106334424, https://openalex.org/W2044709125, https://openalex.org/W2016709972, https://openalex.org/W1543520236, https://openalex.org/W2008813646, https://openalex.org/W2150244830, https://openalex.org/W2557406209, https://openalex.org/W2159126105, https://openalex.org/W2110988848, https://openalex.org/W1977943938, https://openalex.org/W2132340807, https://openalex.org/W1979565259, https://openalex.org/W3099100043, https://openalex.org/W2155019998, https://openalex.org/W1542437639, https://openalex.org/W2031660331, https://openalex.org/W2085507535, https://openalex.org/W2940979927, https://openalex.org/W2110081683, https://openalex.org/W1565374082, https://openalex.org/W225560312 |
| referenced_works_count | 70 |
| abstract_inverted_index.a | 11, 49, 56, 61, 65, 69, 74, 86, 109, 136 |
| abstract_inverted_index.If | 108 |
| abstract_inverted_index.To | 0 |
| abstract_inverted_index.be | 158 |
| abstract_inverted_index.by | 39, 43 |
| abstract_inverted_index.in | 125, 182 |
| abstract_inverted_index.is | 111, 140, 172 |
| abstract_inverted_index.of | 13, 23, 121, 165 |
| abstract_inverted_index.on | 3 |
| abstract_inverted_index.to | 131, 142, 160 |
| abstract_inverted_index.we | 8, 47 |
| abstract_inverted_index.The | 78, 95, 148 |
| abstract_inverted_index.and | 30, 32, 45, 73, 99, 135, 167 |
| abstract_inverted_index.can | 84, 103, 157 |
| abstract_inverted_index.for | 175 |
| abstract_inverted_index.old | 123 |
| abstract_inverted_index.the | 24, 33, 40, 92, 113, 122, 133, 144, 153, 163, 169 |
| abstract_inverted_index.show | 151 |
| abstract_inverted_index.some | 119 |
| abstract_inverted_index.test | 15, 155 |
| abstract_inverted_index.that | 152, 168 |
| abstract_inverted_index.true | 25 |
| abstract_inverted_index.used | 159 |
| abstract_inverted_index.very | 173 |
| abstract_inverted_index.when | 91 |
| abstract_inverted_index.with | 17, 55, 89, 127, 184 |
| abstract_inverted_index.first | 9 |
| abstract_inverted_index.front | 27 |
| abstract_inverted_index.group | 12 |
| abstract_inverted_index.modes | 22 |
| abstract_inverted_index.(e.g., | 28 |
| abstract_inverted_index.Pareto | 26 |
| abstract_inverted_index.change | 70, 75, 110, 115 |
| abstract_inverted_index.design | 48 |
| abstract_inverted_index.handle | 105 |
| abstract_inverted_index.mating | 62, 96 |
| abstract_inverted_index.method | 139 |
| abstract_inverted_index.obtain | 85 |
| abstract_inverted_index.reuses | 118 |
| abstract_inverted_index.update | 138 |
| abstract_inverted_index.clearly | 161 |
| abstract_inverted_index.dynamic | 4, 50, 177 |
| abstract_inverted_index.generic | 14 |
| abstract_inverted_index.improve | 143 |
| abstract_inverted_index.method, | 72 |
| abstract_inverted_index.portion | 120 |
| abstract_inverted_index.promote | 1 |
| abstract_inverted_index.propose | 10 |
| abstract_inverted_index.region. | 36 |
| abstract_inverted_index.results | 150 |
| abstract_inverted_index.solving | 176 |
| abstract_inverted_index.changes. | 94 |
| abstract_inverted_index.changing | 34 |
| abstract_inverted_index.designed | 79, 141 |
| abstract_inverted_index.dynamism | 44 |
| abstract_inverted_index.feasible | 35 |
| abstract_inverted_index.operator | 83, 102 |
| abstract_inverted_index.previous | 146 |
| abstract_inverted_index.problems | 16, 156, 181 |
| abstract_inverted_index.proposed | 114, 154, 170 |
| abstract_inverted_index.randomly | 128 |
| abstract_inverted_index.research | 2 |
| abstract_inverted_index.response | 76, 116 |
| abstract_inverted_index.retained | 145 |
| abstract_inverted_index.solution | 58, 81 |
| abstract_inverted_index.strategy | 98, 117 |
| abstract_inverted_index.algorithm | 54, 171 |
| abstract_inverted_index.detected, | 112 |
| abstract_inverted_index.detection | 71 |
| abstract_inverted_index.different | 21 |
| abstract_inverted_index.diversity | 90 |
| abstract_inverted_index.generated | 129 |
| abstract_inverted_index.including | 20 |
| abstract_inverted_index.motivated | 38 |
| abstract_inverted_index.operator, | 60, 68 |
| abstract_inverted_index.presented | 42 |
| abstract_inverted_index.selection | 59, 63, 67, 82, 97, 101 |
| abstract_inverted_index.solutions | 124, 130 |
| abstract_inverted_index.strategy, | 64 |
| abstract_inverted_index.strategy. | 77 |
| abstract_inverted_index.adaptively | 104 |
| abstract_inverted_index.challenges | 41 |
| abstract_inverted_index.comparison | 183 |
| abstract_inverted_index.infeasible | 106 |
| abstract_inverted_index.population | 66, 88, 100 |
| abstract_inverted_index.solutions. | 107, 147 |
| abstract_inverted_index.algorithms, | 166 |
| abstract_inverted_index.algorithms. | 186 |
| abstract_inverted_index.challenging | 18 |
| abstract_inverted_index.combination | 126 |
| abstract_inverted_index.competitive | 174 |
| abstract_inverted_index.constrained | 5, 51, 178 |
| abstract_inverted_index.distinguish | 162 |
| abstract_inverted_index.environment | 93 |
| abstract_inverted_index.performance | 164 |
| abstract_inverted_index.population, | 134 |
| abstract_inverted_index.constraints, | 46 |
| abstract_inverted_index.experimental | 149 |
| abstract_inverted_index.nondominated | 57, 80, 87 |
| abstract_inverted_index.optimization | 53, 180 |
| abstract_inverted_index.reinitialize | 132 |
| abstract_inverted_index.steady-state | 137 |
| abstract_inverted_index.Subsequently, | 37 |
| abstract_inverted_index.optimization, | 7 |
| abstract_inverted_index.multiobjective | 6, 52, 179 |
| abstract_inverted_index.characteristics, | 19 |
| abstract_inverted_index.state-of-the-art | 185 |
| abstract_inverted_index.convexity-concavity | 29 |
| abstract_inverted_index.connectedness-disconnectedness) | 31 |
| cited_by_percentile_year.max | 100 |
| cited_by_percentile_year.min | 99 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile.value | 0.98097787 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |