A Novel Feature Descriptor for Image Retrieval by Combining Modified\n Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern Article Swipe
YOU?
·
· 2018
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.1801.00879
In this paper, we have proposed a novel feature descriptors combining color\nand texture information collectively. In our proposed color descriptor\ncomponent, the inter-channel relationship between Hue (H) and Saturation (S)\nchannels in the HSV color space has been explored which was not done earlier.\nWe have quantized the H channel into a number of bins and performed the voting\nwith saturation values and vice versa by following a principle similar to that\nof the HOG descriptor, where orientation of the gradient is quantized into a\ncertain number of bins and voting is done with gradient magnitude. This helps\nus to study the nature of variation of saturation with variation in Hue and\nnature of variation of Hue with the variation in saturation. The texture\ncomponent of our descriptor considers the co-occurrence relationship between\nthe pixels symmetric about both the diagonals of a 3x3 window. Our work is\ninspired from the work done by Dubey et al.[1]. These two components, viz.\ncolor and texture information individually perform better than existing texture\nand color descriptors. Moreover, when concatenated the proposed descriptors\nprovide significant improvement over existing descriptors for content base\ncolor image retrieval. The proposed descriptor has been tested for image\nretrieval on five databases, including texture image databases - MIT VisTex\ndatabase and Salzburg texture database and natural scene databases Corel 1K,\nCorel 5K and Corel 10K. The precision and recall values experimented on these\ndatabases are compared with some state-of-art local patterns. The proposed\nmethod provided satisfactory results from the experiments.\n
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/1801.00879
- https://arxiv.org/pdf/1801.00879
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4302161989
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4302161989Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.1801.00879Digital Object Identifier
- Title
-
A Novel Feature Descriptor for Image Retrieval by Combining Modified\n Color Histogram and Diagonally Symmetric Co-occurrence Texture PatternWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2018Year of publication
- Publication date
-
2018-01-02Full publication date if available
- Authors
-
Ayan Kumar Bhunia, Avirup Bhattacharyya, Prithaj Banerjee, Partha Pratim Roy, Subrahmanyam MuralaList of authors in order
- Landing page
-
https://arxiv.org/abs/1801.00879Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/1801.00879Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/1801.00879Direct OA link when available
- Concepts
-
Hue, Artificial intelligence, Pattern recognition (psychology), Color histogram, Histogram, Mathematics, Computer science, Computer vision, Pixel, Color space, Image retrieval, Feature (linguistics), Image texture, Color image, Image (mathematics), Image processing, Linguistics, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4302161989 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.1801.00879 |
| ids.openalex | https://openalex.org/W4302161989 |
| fwci | 0.0 |
| type | preprint |
| title | A Novel Feature Descriptor for Image Retrieval by Combining Modified\n Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10627 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.998199999332428 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Advanced Image and Video Retrieval Techniques |
| topics[1].id | https://openalex.org/T10824 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9975000023841858 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Image Retrieval and Classification Techniques |
| topics[2].id | https://openalex.org/T10689 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9218000173568726 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2214 |
| topics[2].subfield.display_name | Media Technology |
| topics[2].display_name | Remote-Sensing Image Classification |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C126537357 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8262197971343994 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q372948 |
| concepts[0].display_name | Hue |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7188440561294556 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C153180895 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6205928921699524 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[2].display_name | Pattern recognition (psychology) |
| concepts[3].id | https://openalex.org/C12043971 |
| concepts[3].level | 5 |
| concepts[3].score | 0.5669602751731873 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2636542 |
| concepts[3].display_name | Color histogram |
| concepts[4].id | https://openalex.org/C53533937 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5616886615753174 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[4].display_name | Histogram |
| concepts[5].id | https://openalex.org/C33923547 |
| concepts[5].level | 0 |
| concepts[5].score | 0.48532217741012573 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[5].display_name | Mathematics |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4766562581062317 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C31972630 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4496420919895172 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[7].display_name | Computer vision |
| concepts[8].id | https://openalex.org/C160633673 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4465658962726593 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[8].display_name | Pixel |
| concepts[9].id | https://openalex.org/C2961294 |
| concepts[9].level | 3 |
| concepts[9].score | 0.446156769990921 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q166863 |
| concepts[9].display_name | Color space |
| concepts[10].id | https://openalex.org/C1667742 |
| concepts[10].level | 3 |
| concepts[10].score | 0.4234468638896942 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q10927554 |
| concepts[10].display_name | Image retrieval |
| concepts[11].id | https://openalex.org/C2776401178 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42178255319595337 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[11].display_name | Feature (linguistics) |
| concepts[12].id | https://openalex.org/C63099799 |
| concepts[12].level | 4 |
| concepts[12].score | 0.42116957902908325 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q17147001 |
| concepts[12].display_name | Image texture |
| concepts[13].id | https://openalex.org/C142616399 |
| concepts[13].level | 4 |
| concepts[13].score | 0.3353431820869446 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q5148604 |
| concepts[13].display_name | Color image |
| concepts[14].id | https://openalex.org/C115961682 |
| concepts[14].level | 2 |
| concepts[14].score | 0.19497933983802795 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[14].display_name | Image (mathematics) |
| concepts[15].id | https://openalex.org/C9417928 |
| concepts[15].level | 3 |
| concepts[15].score | 0.19056951999664307 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1070689 |
| concepts[15].display_name | Image processing |
| concepts[16].id | https://openalex.org/C41895202 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[16].display_name | Linguistics |
| concepts[17].id | https://openalex.org/C138885662 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[17].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/hue |
| keywords[0].score | 0.8262197971343994 |
| keywords[0].display_name | Hue |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.7188440561294556 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/pattern-recognition |
| keywords[2].score | 0.6205928921699524 |
| keywords[2].display_name | Pattern recognition (psychology) |
| keywords[3].id | https://openalex.org/keywords/color-histogram |
| keywords[3].score | 0.5669602751731873 |
| keywords[3].display_name | Color histogram |
| keywords[4].id | https://openalex.org/keywords/histogram |
| keywords[4].score | 0.5616886615753174 |
| keywords[4].display_name | Histogram |
| keywords[5].id | https://openalex.org/keywords/mathematics |
| keywords[5].score | 0.48532217741012573 |
| keywords[5].display_name | Mathematics |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4766562581062317 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/computer-vision |
| keywords[7].score | 0.4496420919895172 |
| keywords[7].display_name | Computer vision |
| keywords[8].id | https://openalex.org/keywords/pixel |
| keywords[8].score | 0.4465658962726593 |
| keywords[8].display_name | Pixel |
| keywords[9].id | https://openalex.org/keywords/color-space |
| keywords[9].score | 0.446156769990921 |
| keywords[9].display_name | Color space |
| keywords[10].id | https://openalex.org/keywords/image-retrieval |
| keywords[10].score | 0.4234468638896942 |
| keywords[10].display_name | Image retrieval |
| keywords[11].id | https://openalex.org/keywords/feature |
| keywords[11].score | 0.42178255319595337 |
| keywords[11].display_name | Feature (linguistics) |
| keywords[12].id | https://openalex.org/keywords/image-texture |
| keywords[12].score | 0.42116957902908325 |
| keywords[12].display_name | Image texture |
| keywords[13].id | https://openalex.org/keywords/color-image |
| keywords[13].score | 0.3353431820869446 |
| keywords[13].display_name | Color image |
| keywords[14].id | https://openalex.org/keywords/image |
| keywords[14].score | 0.19497933983802795 |
| keywords[14].display_name | Image (mathematics) |
| keywords[15].id | https://openalex.org/keywords/image-processing |
| keywords[15].score | 0.19056951999664307 |
| keywords[15].display_name | Image processing |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:1801.00879 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/1801.00879 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/1801.00879 |
| indexed_in | arxiv |
| authorships[0].author.id | https://openalex.org/A5102727854 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3725-7411 |
| authorships[0].author.display_name | Ayan Kumar Bhunia |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Bhunia, Ayan Kumar |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5026634755 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Avirup Bhattacharyya |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Bhattacharyya, Avirup |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5107278668 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Prithaj Banerjee |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Banerjee, Prithaj |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5007870329 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3202-4333 |
| authorships[3].author.display_name | Partha Pratim Roy |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Roy, Partha Pratim |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5032409915 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3384-4368 |
| authorships[4].author.display_name | Subrahmanyam Murala |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Murala, Subrahmanyam |
| authorships[4].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/1801.00879 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Feature Descriptor for Image Retrieval by Combining Modified\n Color Histogram and Diagonally Symmetric Co-occurrence Texture Pattern |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10627 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.998199999332428 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Advanced Image and Video Retrieval Techniques |
| related_works | https://openalex.org/W1981206111, https://openalex.org/W2116367486, https://openalex.org/W2167320272, https://openalex.org/W2294493990, https://openalex.org/W1611718501, https://openalex.org/W2404548701, https://openalex.org/W2589042415, https://openalex.org/W2584984915, https://openalex.org/W2382864128, https://openalex.org/W2355820532 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | pmh:oai:arXiv.org:1801.00879 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/1801.00879 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/1801.00879 |
| primary_location.id | pmh:oai:arXiv.org:1801.00879 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/1801.00879 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/1801.00879 |
| publication_date | 2018-01-02 |
| publication_year | 2018 |
| referenced_works_count | 0 |
| abstract_inverted_index.- | 191 |
| abstract_inverted_index.H | 45 |
| abstract_inverted_index.a | 6, 48, 63, 131 |
| abstract_inverted_index.5K | 204 |
| abstract_inverted_index.In | 0, 15 |
| abstract_inverted_index.by | 61, 141 |
| abstract_inverted_index.et | 143 |
| abstract_inverted_index.in | 29, 102, 112 |
| abstract_inverted_index.is | 76, 85 |
| abstract_inverted_index.of | 50, 73, 81, 96, 98, 105, 107, 116, 130 |
| abstract_inverted_index.on | 184, 214 |
| abstract_inverted_index.to | 66, 92 |
| abstract_inverted_index.we | 3 |
| abstract_inverted_index.(H) | 25 |
| abstract_inverted_index.3x3 | 132 |
| abstract_inverted_index.HOG | 69 |
| abstract_inverted_index.HSV | 31 |
| abstract_inverted_index.Hue | 24, 103, 108 |
| abstract_inverted_index.MIT | 192 |
| abstract_inverted_index.Our | 134 |
| abstract_inverted_index.The | 114, 176, 208, 223 |
| abstract_inverted_index.and | 26, 52, 58, 83, 149, 194, 198, 205, 210 |
| abstract_inverted_index.are | 216 |
| abstract_inverted_index.for | 171, 182 |
| abstract_inverted_index.has | 34, 179 |
| abstract_inverted_index.not | 39 |
| abstract_inverted_index.our | 16, 117 |
| abstract_inverted_index.the | 20, 30, 44, 54, 68, 74, 94, 110, 120, 128, 138, 163, 229 |
| abstract_inverted_index.two | 146 |
| abstract_inverted_index.was | 38 |
| abstract_inverted_index.10K. | 207 |
| abstract_inverted_index.This | 90 |
| abstract_inverted_index.been | 35, 180 |
| abstract_inverted_index.bins | 51, 82 |
| abstract_inverted_index.both | 127 |
| abstract_inverted_index.done | 40, 86, 140 |
| abstract_inverted_index.five | 185 |
| abstract_inverted_index.from | 137, 228 |
| abstract_inverted_index.have | 4, 42 |
| abstract_inverted_index.into | 47, 78 |
| abstract_inverted_index.over | 168 |
| abstract_inverted_index.some | 219 |
| abstract_inverted_index.than | 155 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.vice | 59 |
| abstract_inverted_index.when | 161 |
| abstract_inverted_index.with | 87, 100, 109, 218 |
| abstract_inverted_index.work | 135, 139 |
| abstract_inverted_index.Corel | 202, 206 |
| abstract_inverted_index.Dubey | 142 |
| abstract_inverted_index.These | 145 |
| abstract_inverted_index.about | 126 |
| abstract_inverted_index.color | 18, 32, 158 |
| abstract_inverted_index.image | 174, 189 |
| abstract_inverted_index.local | 221 |
| abstract_inverted_index.novel | 7 |
| abstract_inverted_index.scene | 200 |
| abstract_inverted_index.space | 33 |
| abstract_inverted_index.study | 93 |
| abstract_inverted_index.versa | 60 |
| abstract_inverted_index.where | 71 |
| abstract_inverted_index.which | 37 |
| abstract_inverted_index.better | 154 |
| abstract_inverted_index.nature | 95 |
| abstract_inverted_index.number | 49, 80 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.pixels | 124 |
| abstract_inverted_index.recall | 211 |
| abstract_inverted_index.tested | 181 |
| abstract_inverted_index.values | 57, 212 |
| abstract_inverted_index.voting | 84 |
| abstract_inverted_index.al.[1]. | 144 |
| abstract_inverted_index.between | 23 |
| abstract_inverted_index.channel | 46 |
| abstract_inverted_index.content | 172 |
| abstract_inverted_index.feature | 8 |
| abstract_inverted_index.natural | 199 |
| abstract_inverted_index.perform | 153 |
| abstract_inverted_index.results | 227 |
| abstract_inverted_index.similar | 65 |
| abstract_inverted_index.texture | 12, 150, 188, 196 |
| abstract_inverted_index.window. | 133 |
| abstract_inverted_index.Salzburg | 195 |
| abstract_inverted_index.compared | 217 |
| abstract_inverted_index.database | 197 |
| abstract_inverted_index.existing | 156, 169 |
| abstract_inverted_index.explored | 36 |
| abstract_inverted_index.gradient | 75, 88 |
| abstract_inverted_index.proposed | 5, 17, 164, 177 |
| abstract_inverted_index.provided | 225 |
| abstract_inverted_index.that\nof | 67 |
| abstract_inverted_index.Moreover, | 160 |
| abstract_inverted_index.combining | 10 |
| abstract_inverted_index.considers | 119 |
| abstract_inverted_index.databases | 190, 201 |
| abstract_inverted_index.diagonals | 129 |
| abstract_inverted_index.following | 62 |
| abstract_inverted_index.helps\nus | 91 |
| abstract_inverted_index.including | 187 |
| abstract_inverted_index.patterns. | 222 |
| abstract_inverted_index.performed | 53 |
| abstract_inverted_index.precision | 209 |
| abstract_inverted_index.principle | 64 |
| abstract_inverted_index.quantized | 43, 77 |
| abstract_inverted_index.symmetric | 125 |
| abstract_inverted_index.variation | 97, 101, 106, 111 |
| abstract_inverted_index.1K,\nCorel | 203 |
| abstract_inverted_index.Saturation | 27 |
| abstract_inverted_index.a\ncertain | 79 |
| abstract_inverted_index.color\nand | 11 |
| abstract_inverted_index.databases, | 186 |
| abstract_inverted_index.descriptor | 118, 178 |
| abstract_inverted_index.magnitude. | 89 |
| abstract_inverted_index.retrieval. | 175 |
| abstract_inverted_index.saturation | 56, 99 |
| abstract_inverted_index.and\nnature | 104 |
| abstract_inverted_index.base\ncolor | 173 |
| abstract_inverted_index.components, | 147 |
| abstract_inverted_index.descriptor, | 70 |
| abstract_inverted_index.descriptors | 9, 170 |
| abstract_inverted_index.improvement | 167 |
| abstract_inverted_index.information | 13, 151 |
| abstract_inverted_index.orientation | 72 |
| abstract_inverted_index.saturation. | 113 |
| abstract_inverted_index.significant | 166 |
| abstract_inverted_index.viz.\ncolor | 148 |
| abstract_inverted_index.between\nthe | 123 |
| abstract_inverted_index.concatenated | 162 |
| abstract_inverted_index.descriptors. | 159 |
| abstract_inverted_index.earlier.\nWe | 41 |
| abstract_inverted_index.experimented | 213 |
| abstract_inverted_index.individually | 152 |
| abstract_inverted_index.is\ninspired | 136 |
| abstract_inverted_index.relationship | 22, 122 |
| abstract_inverted_index.satisfactory | 226 |
| abstract_inverted_index.state-of-art | 220 |
| abstract_inverted_index.texture\nand | 157 |
| abstract_inverted_index.voting\nwith | 55 |
| abstract_inverted_index.(S)\nchannels | 28 |
| abstract_inverted_index.co-occurrence | 121 |
| abstract_inverted_index.collectively. | 14 |
| abstract_inverted_index.inter-channel | 21 |
| abstract_inverted_index.experiments.\n | 230 |
| abstract_inverted_index.VisTex\ndatabase | 193 |
| abstract_inverted_index.image\nretrieval | 183 |
| abstract_inverted_index.proposed\nmethod | 224 |
| abstract_inverted_index.these\ndatabases | 215 |
| abstract_inverted_index.texture\ncomponent | 115 |
| abstract_inverted_index.descriptors\nprovide | 165 |
| abstract_inverted_index.descriptor\ncomponent, | 19 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.31174068 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |