A Novel Framework for Exploring the Spatial Characteristics of Leisure Tourism Using Multisource Data: A Case Study of Qingdao, China Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1109/jstars.2022.3196002
Spatial characteristics of leisure tourism resources are essential for human life, the urban economy, and tourism planning. This article presents a novel framework to explore these characteristics based on multisource data, such as points of interest, OpenStreetMap roads, Sentinel-2 multispectral instrument images, and other data, and proposes a new tourism area identification method by integrating the attractiveness of attractions with term frequency–inverse document frequency. The roles of the influencing factors were measured by using the geodetector and related statistical analyses. The results showed that the resources were centered on Jiaozhou Bay, and their axial direction was “northeast to southwest.” The distribution of the overall resources was characterized by “one cluster with multiple core points,” and different types of resources had different aggregation distributions. The recreational recreation and cultural leisure zones were more likely to be distributed in and near the center of each district, and their numbers were high, while the shopping leisure and natural recreation (NR) zones were the opposite. The distribution of each type of resource was the result of a combination of factors working together, except for NR resources, which were mainly influenced by natural factors, while others were mainly affected by socioeconomic factors. The study findings are instructive for tourism planning.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/jstars.2022.3196002
- https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4289716861
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4289716861Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/jstars.2022.3196002Digital Object Identifier
- Title
-
A Novel Framework for Exploring the Spatial Characteristics of Leisure Tourism Using Multisource Data: A Case Study of Qingdao, ChinaWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-01-01Full publication date if available
- Authors
-
Yiqun Shang, Caiyun Wen, Yangchun Bai, Dongyang HouList of authors in order
- Landing page
-
https://doi.org/10.1109/jstars.2022.3196002Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdfDirect OA link when available
- Concepts
-
China, Tourism, Computer science, Data science, Geography, ArchaeologyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2023: 1Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4289716861 |
|---|---|
| doi | https://doi.org/10.1109/jstars.2022.3196002 |
| ids.doi | https://doi.org/10.1109/jstars.2022.3196002 |
| ids.openalex | https://openalex.org/W4289716861 |
| fwci | 0.49764106 |
| type | article |
| title | A Novel Framework for Exploring the Spatial Characteristics of Leisure Tourism Using Multisource Data: A Case Study of Qingdao, China |
| biblio.issue | |
| biblio.volume | 15 |
| biblio.last_page | 6271 |
| biblio.first_page | 6259 |
| grants[0].funder | https://openalex.org/F4320321001 |
| grants[0].award_id | 41701443 |
| grants[0].funder_display_name | National Natural Science Foundation of China |
| grants[1].funder | https://openalex.org/F4320321001 |
| grants[1].award_id | 42171457 |
| grants[1].funder_display_name | National Natural Science Foundation of China |
| grants[2].funder | https://openalex.org/F4320322843 |
| grants[2].award_id | 2021JJ40721 |
| grants[2].funder_display_name | Natural Science Foundation of Hunan Province |
| topics[0].id | https://openalex.org/T11980 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9990000128746033 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3313 |
| topics[0].subfield.display_name | Transportation |
| topics[0].display_name | Human Mobility and Location-Based Analysis |
| topics[1].id | https://openalex.org/T10298 |
| topics[1].field.id | https://openalex.org/fields/33 |
| topics[1].field.display_name | Social Sciences |
| topics[1].score | 0.994700014591217 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3313 |
| topics[1].subfield.display_name | Transportation |
| topics[1].display_name | Urban Transport and Accessibility |
| topics[2].id | https://openalex.org/T10055 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9840999841690063 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Diverse Aspects of Tourism Research |
| funders[0].id | https://openalex.org/F4320321001 |
| funders[0].ror | https://ror.org/01h0zpd94 |
| funders[0].display_name | National Natural Science Foundation of China |
| funders[1].id | https://openalex.org/F4320322843 |
| funders[1].ror | |
| funders[1].display_name | Natural Science Foundation of Hunan Province |
| is_xpac | False |
| apc_list.value | 1250 |
| apc_list.currency | USD |
| apc_list.value_usd | 1250 |
| apc_paid.value | 1250 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1250 |
| concepts[0].id | https://openalex.org/C191935318 |
| concepts[0].level | 2 |
| concepts[0].score | 0.717069149017334 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q148 |
| concepts[0].display_name | China |
| concepts[1].id | https://openalex.org/C18918823 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7058426141738892 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q49389 |
| concepts[1].display_name | Tourism |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5079966187477112 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C2522767166 |
| concepts[3].level | 1 |
| concepts[3].score | 0.4067190885543823 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2374463 |
| concepts[3].display_name | Data science |
| concepts[4].id | https://openalex.org/C205649164 |
| concepts[4].level | 0 |
| concepts[4].score | 0.2237253487110138 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[4].display_name | Geography |
| concepts[5].id | https://openalex.org/C166957645 |
| concepts[5].level | 1 |
| concepts[5].score | 0.0 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q23498 |
| concepts[5].display_name | Archaeology |
| keywords[0].id | https://openalex.org/keywords/china |
| keywords[0].score | 0.717069149017334 |
| keywords[0].display_name | China |
| keywords[1].id | https://openalex.org/keywords/tourism |
| keywords[1].score | 0.7058426141738892 |
| keywords[1].display_name | Tourism |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5079966187477112 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/data-science |
| keywords[3].score | 0.4067190885543823 |
| keywords[3].display_name | Data science |
| keywords[4].id | https://openalex.org/keywords/geography |
| keywords[4].score | 0.2237253487110138 |
| keywords[4].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1109/jstars.2022.3196002 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S117727964 |
| locations[0].source.issn | 1939-1404, 2151-1535 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1939-1404 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.1109/jstars.2022.3196002 |
| locations[1].id | pmh:oai:doaj.org/article:07e42bd9e5f04ed986a1279b04fac564 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].source.host_organization_lineage | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol 15, Pp 6259-6271 (2022) |
| locations[1].landing_page_url | https://doaj.org/article/07e42bd9e5f04ed986a1279b04fac564 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5002935608 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0166-5130 |
| authorships[0].author.display_name | Yiqun Shang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3125743391 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Information Engineering, China University of Geosciences Beijing, Beijing, China |
| authorships[0].institutions[0].id | https://openalex.org/I3125743391 |
| authorships[0].institutions[0].ror | https://ror.org/04q6c7p66 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3125743391 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Geosciences (Beijing) |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yiqun Shang |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Information Engineering, China University of Geosciences Beijing, Beijing, China |
| authorships[1].author.id | https://openalex.org/A5063945169 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-9617-4544 |
| authorships[1].author.display_name | Caiyun Wen |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I4210108914, https://openalex.org/I4210138501 |
| authorships[1].affiliations[0].raw_affiliation_string | Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China |
| authorships[1].institutions[0].id | https://openalex.org/I4210138501 |
| authorships[1].institutions[0].ror | https://ror.org/0313jb750 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Chinese Academy of Agricultural Sciences |
| authorships[1].institutions[1].id | https://openalex.org/I4210108914 |
| authorships[1].institutions[1].ror | https://ror.org/01nrzdp21 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I4210108914, https://openalex.org/I4210127390, https://openalex.org/I4210138501, https://openalex.org/I4210151987 |
| authorships[1].institutions[1].country_code | CN |
| authorships[1].institutions[1].display_name | Institute of Agricultural Resources and Regional Planning |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Caiyun Wen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China |
| authorships[2].author.id | https://openalex.org/A5053225652 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0713-439X |
| authorships[2].author.display_name | Yangchun Bai |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I154099455 |
| authorships[2].affiliations[0].raw_affiliation_string | Population, Resources and Environmental Economics at the Blue-Green Development Institute, Shandong University (Weihai), Weihai, China |
| authorships[2].institutions[0].id | https://openalex.org/I154099455 |
| authorships[2].institutions[0].ror | https://ror.org/0207yh398 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I154099455 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shandong University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yangchun Bai |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Population, Resources and Environmental Economics at the Blue-Green Development Institute, Shandong University (Weihai), Weihai, China |
| authorships[3].author.id | https://openalex.org/A5058638373 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-1156-9353 |
| authorships[3].author.display_name | Dongyang Hou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Geosciences and Info-Physics, Central South University, Changsha, China |
| authorships[3].institutions[0].id | https://openalex.org/I139660479 |
| authorships[3].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Central South University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Dongyang Hou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Geosciences and Info-Physics, Central South University, Changsha, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Framework for Exploring the Spatial Characteristics of Leisure Tourism Using Multisource Data: A Case Study of Qingdao, China |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11980 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9990000128746033 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3313 |
| primary_topic.subfield.display_name | Transportation |
| primary_topic.display_name | Human Mobility and Location-Based Analysis |
| related_works | https://openalex.org/W4391375266, https://openalex.org/W2899084033, https://openalex.org/W2748952813, https://openalex.org/W2350270224, https://openalex.org/W2354620178, https://openalex.org/W600967366, https://openalex.org/W2390279801, https://openalex.org/W2391061603, https://openalex.org/W4391913857, https://openalex.org/W2358668433 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/jstars.2022.3196002 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S117727964 |
| best_oa_location.source.issn | 1939-1404, 2151-1535 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1939-1404 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.1109/jstars.2022.3196002 |
| primary_location.id | doi:10.1109/jstars.2022.3196002 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S117727964 |
| primary_location.source.issn | 1939-1404, 2151-1535 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1939-1404 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/4609443/4609444/09849022.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.1109/jstars.2022.3196002 |
| publication_date | 2022-01-01 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2901522701, https://openalex.org/W2751923902, https://openalex.org/W2979415575, https://openalex.org/W4230575306, https://openalex.org/W1777253858, https://openalex.org/W2217941651, https://openalex.org/W2619168904, https://openalex.org/W2593759305, https://openalex.org/W2726150830, https://openalex.org/W4230118652, https://openalex.org/W2552386646, https://openalex.org/W2765456220, https://openalex.org/W3010913875, https://openalex.org/W2759163516, https://openalex.org/W2981583326, https://openalex.org/W2947428072, https://openalex.org/W2047822617, https://openalex.org/W2774532165, https://openalex.org/W2903183473, https://openalex.org/W1123179804, https://openalex.org/W2027080896, https://openalex.org/W2965480143, https://openalex.org/W2597533437, https://openalex.org/W2789121016, https://openalex.org/W3013028075, https://openalex.org/W2517491419, https://openalex.org/W3088071045, https://openalex.org/W3005596500, https://openalex.org/W2754939259, https://openalex.org/W2981287675, https://openalex.org/W2765102749, https://openalex.org/W2534538876, https://openalex.org/W2170122838, https://openalex.org/W2899575891, https://openalex.org/W2912270075, https://openalex.org/W2999447843, https://openalex.org/W2903852284, https://openalex.org/W2996079839, https://openalex.org/W2163283323, https://openalex.org/W2964158345, https://openalex.org/W2971307500, https://openalex.org/W2708165930 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 20, 47, 172 |
| abstract_inverted_index.NR | 180 |
| abstract_inverted_index.as | 32 |
| abstract_inverted_index.be | 134 |
| abstract_inverted_index.by | 53, 72, 107, 186, 194 |
| abstract_inverted_index.in | 136 |
| abstract_inverted_index.of | 2, 34, 57, 66, 101, 117, 141, 163, 166, 171, 174 |
| abstract_inverted_index.on | 28, 88 |
| abstract_inverted_index.to | 23, 97, 133 |
| abstract_inverted_index.The | 64, 80, 99, 123, 161, 197 |
| abstract_inverted_index.and | 14, 42, 45, 76, 91, 114, 126, 137, 144, 153 |
| abstract_inverted_index.are | 6, 200 |
| abstract_inverted_index.for | 8, 179, 202 |
| abstract_inverted_index.had | 119 |
| abstract_inverted_index.new | 48 |
| abstract_inverted_index.the | 11, 55, 67, 74, 84, 102, 139, 150, 159, 169 |
| abstract_inverted_index.was | 95, 105, 168 |
| abstract_inverted_index.(NR) | 156 |
| abstract_inverted_index.Bay, | 90 |
| abstract_inverted_index.This | 17 |
| abstract_inverted_index.area | 50 |
| abstract_inverted_index.core | 112 |
| abstract_inverted_index.each | 142, 164 |
| abstract_inverted_index.more | 131 |
| abstract_inverted_index.near | 138 |
| abstract_inverted_index.such | 31 |
| abstract_inverted_index.term | 60 |
| abstract_inverted_index.that | 83 |
| abstract_inverted_index.type | 165 |
| abstract_inverted_index.were | 70, 86, 130, 147, 158, 183, 191 |
| abstract_inverted_index.with | 59, 110 |
| abstract_inverted_index.axial | 93 |
| abstract_inverted_index.based | 27 |
| abstract_inverted_index.data, | 30, 44 |
| abstract_inverted_index.high, | 148 |
| abstract_inverted_index.human | 9 |
| abstract_inverted_index.life, | 10 |
| abstract_inverted_index.novel | 21 |
| abstract_inverted_index.other | 43 |
| abstract_inverted_index.roles | 65 |
| abstract_inverted_index.study | 198 |
| abstract_inverted_index.their | 92, 145 |
| abstract_inverted_index.these | 25 |
| abstract_inverted_index.types | 116 |
| abstract_inverted_index.urban | 12 |
| abstract_inverted_index.using | 73 |
| abstract_inverted_index.which | 182 |
| abstract_inverted_index.while | 149, 189 |
| abstract_inverted_index.zones | 129, 157 |
| abstract_inverted_index.center | 140 |
| abstract_inverted_index.except | 178 |
| abstract_inverted_index.likely | 132 |
| abstract_inverted_index.mainly | 184, 192 |
| abstract_inverted_index.method | 52 |
| abstract_inverted_index.others | 190 |
| abstract_inverted_index.points | 33 |
| abstract_inverted_index.result | 170 |
| abstract_inverted_index.roads, | 37 |
| abstract_inverted_index.showed | 82 |
| abstract_inverted_index.Spatial | 0 |
| abstract_inverted_index.article | 18 |
| abstract_inverted_index.cluster | 109 |
| abstract_inverted_index.explore | 24 |
| abstract_inverted_index.factors | 69, 175 |
| abstract_inverted_index.images, | 41 |
| abstract_inverted_index.leisure | 3, 128, 152 |
| abstract_inverted_index.natural | 154, 187 |
| abstract_inverted_index.numbers | 146 |
| abstract_inverted_index.overall | 103 |
| abstract_inverted_index.related | 77 |
| abstract_inverted_index.results | 81 |
| abstract_inverted_index.tourism | 4, 15, 49, 203 |
| abstract_inverted_index.working | 176 |
| abstract_inverted_index.Jiaozhou | 89 |
| abstract_inverted_index.affected | 193 |
| abstract_inverted_index.centered | 87 |
| abstract_inverted_index.cultural | 127 |
| abstract_inverted_index.document | 62 |
| abstract_inverted_index.economy, | 13 |
| abstract_inverted_index.factors, | 188 |
| abstract_inverted_index.factors. | 196 |
| abstract_inverted_index.findings | 199 |
| abstract_inverted_index.measured | 71 |
| abstract_inverted_index.multiple | 111 |
| abstract_inverted_index.presents | 19 |
| abstract_inverted_index.proposes | 46 |
| abstract_inverted_index.resource | 167 |
| abstract_inverted_index.shopping | 151 |
| abstract_inverted_index.analyses. | 79 |
| abstract_inverted_index.different | 115, 120 |
| abstract_inverted_index.direction | 94 |
| abstract_inverted_index.district, | 143 |
| abstract_inverted_index.essential | 7 |
| abstract_inverted_index.framework | 22 |
| abstract_inverted_index.interest, | 35 |
| abstract_inverted_index.opposite. | 160 |
| abstract_inverted_index.planning. | 16, 204 |
| abstract_inverted_index.resources | 5, 85, 104, 118 |
| abstract_inverted_index.together, | 177 |
| abstract_inverted_index.Sentinel-2 | 38 |
| abstract_inverted_index.frequency. | 63 |
| abstract_inverted_index.influenced | 185 |
| abstract_inverted_index.instrument | 40 |
| abstract_inverted_index.recreation | 125, 155 |
| abstract_inverted_index.resources, | 181 |
| abstract_inverted_index.“one | 108 |
| abstract_inverted_index.aggregation | 121 |
| abstract_inverted_index.attractions | 58 |
| abstract_inverted_index.combination | 173 |
| abstract_inverted_index.distributed | 135 |
| abstract_inverted_index.geodetector | 75 |
| abstract_inverted_index.influencing | 68 |
| abstract_inverted_index.instructive | 201 |
| abstract_inverted_index.integrating | 54 |
| abstract_inverted_index.multisource | 29 |
| abstract_inverted_index.statistical | 78 |
| abstract_inverted_index.distribution | 100, 162 |
| abstract_inverted_index.recreational | 124 |
| abstract_inverted_index.OpenStreetMap | 36 |
| abstract_inverted_index.characterized | 106 |
| abstract_inverted_index.multispectral | 39 |
| abstract_inverted_index.socioeconomic | 195 |
| abstract_inverted_index.attractiveness | 56 |
| abstract_inverted_index.distributions. | 122 |
| abstract_inverted_index.identification | 51 |
| abstract_inverted_index.characteristics | 1, 26 |
| abstract_inverted_index.points,” | 113 |
| abstract_inverted_index.“northeast | 96 |
| abstract_inverted_index.southwest.” | 98 |
| abstract_inverted_index.frequency–inverse | 61 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/8 |
| sustainable_development_goals[0].score | 0.5099999904632568 |
| sustainable_development_goals[0].display_name | Decent work and economic growth |
| citation_normalized_percentile.value | 0.71894302 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |