A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation Article Swipe
Pablo Velarde-Alvarado
,
Hugo Gonzalez
,
Rafael Martínez-Peláez
,
Luis J. Mena
,
Alberto Ochoa-Brust
,
E. Moreno-García
,
Vanessa G. Félix
,
Rodolfo Ostos
·
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22051847
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.3390/s22051847
In this paper, we addressed the problem of dataset scarcity for the task of network intrusion detection. Our main contribution was to develop a framework that provides a complete process for generating network traffic datasets based on the aggregation of real network traces. In addition, we proposed a set of tools for attribute extraction and labeling of traffic sessions. A new dataset with botnet network traffic was generated by the framework to assess our proposed method with machine learning algorithms suitable for unbalanced data. The performance of the classifiers was evaluated in terms of macro-averages of F1-score (0.97) and the Matthews Correlation Coefficient (0.94), showing a good overall performance average.
Related Topics
Concepts
Computer science
Data mining
Botnet
Intrusion detection system
Process (computing)
Task (project management)
Set (abstract data type)
Macro
Machine learning
Artificial intelligence
Traffic classification
Computer network
Engineering
The Internet
World Wide Web
Quality of service
Programming language
Operating system
Systems engineering
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s22051847
- https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400
- OA Status
- gold
- Cited By
- 8
- References
- 38
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4214714029
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4214714029Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s22051847Digital Object Identifier
- Title
-
A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic AggregationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-02-26Full publication date if available
- Authors
-
Pablo Velarde-Alvarado, Hugo Gonzalez, Rafael Martínez-Peláez, Luis J. Mena, Alberto Ochoa-Brust, E. Moreno-García, Vanessa G. Félix, Rodolfo OstosList of authors in order
- Landing page
-
https://doi.org/10.3390/s22051847Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400Direct OA link when available
- Concepts
-
Computer science, Data mining, Botnet, Intrusion detection system, Process (computing), Task (project management), Set (abstract data type), Macro, Machine learning, Artificial intelligence, Traffic classification, Computer network, Engineering, The Internet, World Wide Web, Quality of service, Programming language, Operating system, Systems engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
8Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 3, 2022: 1Per-year citation counts (last 5 years)
- References (count)
-
38Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4214714029 |
|---|---|
| doi | https://doi.org/10.3390/s22051847 |
| ids.doi | https://doi.org/10.3390/s22051847 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/35270994 |
| ids.openalex | https://openalex.org/W4214714029 |
| fwci | 1.71393396 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D000069550 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Machine Learning |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D012107 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Research Design |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D000465 |
| mesh[3].is_major_topic | True |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Algorithms |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D000069550 |
| mesh[4].is_major_topic | True |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Machine Learning |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D012107 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Research Design |
| type | article |
| title | A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation |
| biblio.issue | 5 |
| biblio.volume | 22 |
| biblio.last_page | 1847 |
| biblio.first_page | 1847 |
| topics[0].id | https://openalex.org/T10400 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Network Security and Intrusion Detection |
| topics[1].id | https://openalex.org/T11598 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9998999834060669 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Internet Traffic Analysis and Secure E-voting |
| topics[2].id | https://openalex.org/T11644 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9952999949455261 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1710 |
| topics[2].subfield.display_name | Information Systems |
| topics[2].display_name | Spam and Phishing Detection |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7426866292953491 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C124101348 |
| concepts[1].level | 1 |
| concepts[1].score | 0.6766576766967773 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[1].display_name | Data mining |
| concepts[2].id | https://openalex.org/C22735295 |
| concepts[2].level | 3 |
| concepts[2].score | 0.5835802555084229 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q317671 |
| concepts[2].display_name | Botnet |
| concepts[3].id | https://openalex.org/C35525427 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5490312576293945 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q745881 |
| concepts[3].display_name | Intrusion detection system |
| concepts[4].id | https://openalex.org/C98045186 |
| concepts[4].level | 2 |
| concepts[4].score | 0.531154990196228 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q205663 |
| concepts[4].display_name | Process (computing) |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4964175820350647 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48848044872283936 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C166955791 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4881461560726166 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q629579 |
| concepts[7].display_name | Macro |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.46270066499710083 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.44099345803260803 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C169988225 |
| concepts[10].level | 3 |
| concepts[10].score | 0.41839659214019775 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7832484 |
| concepts[10].display_name | Traffic classification |
| concepts[11].id | https://openalex.org/C31258907 |
| concepts[11].level | 1 |
| concepts[11].score | 0.1103297770023346 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[11].display_name | Computer network |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1093457043170929 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C110875604 |
| concepts[13].level | 2 |
| concepts[13].score | 0.09320956468582153 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q75 |
| concepts[13].display_name | The Internet |
| concepts[14].id | https://openalex.org/C136764020 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q466 |
| concepts[14].display_name | World Wide Web |
| concepts[15].id | https://openalex.org/C5119721 |
| concepts[15].level | 2 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q220501 |
| concepts[15].display_name | Quality of service |
| concepts[16].id | https://openalex.org/C199360897 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[16].display_name | Programming language |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C201995342 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q682496 |
| concepts[18].display_name | Systems engineering |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7426866292953491 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/data-mining |
| keywords[1].score | 0.6766576766967773 |
| keywords[1].display_name | Data mining |
| keywords[2].id | https://openalex.org/keywords/botnet |
| keywords[2].score | 0.5835802555084229 |
| keywords[2].display_name | Botnet |
| keywords[3].id | https://openalex.org/keywords/intrusion-detection-system |
| keywords[3].score | 0.5490312576293945 |
| keywords[3].display_name | Intrusion detection system |
| keywords[4].id | https://openalex.org/keywords/process |
| keywords[4].score | 0.531154990196228 |
| keywords[4].display_name | Process (computing) |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.4964175820350647 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.48848044872283936 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/macro |
| keywords[7].score | 0.4881461560726166 |
| keywords[7].display_name | Macro |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.46270066499710083 |
| keywords[8].display_name | Machine learning |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.44099345803260803 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/traffic-classification |
| keywords[10].score | 0.41839659214019775 |
| keywords[10].display_name | Traffic classification |
| keywords[11].id | https://openalex.org/keywords/computer-network |
| keywords[11].score | 0.1103297770023346 |
| keywords[11].display_name | Computer network |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.1093457043170929 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/the-internet |
| keywords[13].score | 0.09320956468582153 |
| keywords[13].display_name | The Internet |
| language | en |
| locations[0].id | doi:10.3390/s22051847 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s22051847 |
| locations[1].id | pmid:35270994 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/35270994 |
| locations[2].id | pmh:oai:mdpi.com:/1424-8220/22/5/1847/ |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306400947 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | True |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | MDPI (MDPI AG) |
| locations[2].source.host_organization | https://openalex.org/I4210097602 |
| locations[2].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[2].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[2].license | cc-by |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors; Volume 22; Issue 5; Pages: 1847 |
| locations[2].landing_page_url | https://dx.doi.org/10.3390/s22051847 |
| locations[3].id | pmh:oai:pubmedcentral.nih.gov:8914796 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S2764455111 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | PubMed Central |
| locations[3].source.host_organization | https://openalex.org/I1299303238 |
| locations[3].source.host_organization_name | National Institutes of Health |
| locations[3].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | Sensors (Basel) |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8914796 |
| locations[4].id | pmh:oai:doaj.org/article:3363767a8744402fbbbe8dc11e22d13e |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306401280 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[4].source.host_organization | |
| locations[4].source.host_organization_name | |
| locations[4].source.host_organization_lineage | |
| locations[4].license | cc-by-sa |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | article |
| locations[4].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors, Vol 22, Iss 5, p 1847 (2022) |
| locations[4].landing_page_url | https://doaj.org/article/3363767a8744402fbbbe8dc11e22d13e |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5103077393 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-1211-1061 |
| authorships[0].author.display_name | Pablo Velarde-Alvarado |
| authorships[0].countries | MX |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2800400464 |
| authorships[0].affiliations[0].raw_affiliation_string | Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63000, Mexico |
| authorships[0].institutions[0].id | https://openalex.org/I2800400464 |
| authorships[0].institutions[0].ror | https://ror.org/0576q1t15 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I2800400464 |
| authorships[0].institutions[0].country_code | MX |
| authorships[0].institutions[0].display_name | Universidad Autónoma de Nayarit |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Pablo Velarde-Alvarado |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Unidad Académica de Ciencias Básicas e Ingenierías, Universidad Autónoma de Nayarit, Tepic 63000, Mexico |
| authorships[1].author.id | https://openalex.org/A5077707332 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7322-4019 |
| authorships[1].author.display_name | Hugo Gonzalez |
| authorships[1].countries | MX |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3130980388 |
| authorships[1].affiliations[0].raw_affiliation_string | Academia de Tecnologías de la Información y Telemática, Universidad Politécnica de San Luis Potosí, San Luis Potosí 78363, Mexico |
| authorships[1].institutions[0].id | https://openalex.org/I3130980388 |
| authorships[1].institutions[0].ror | https://ror.org/024et1e33 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3130980388 |
| authorships[1].institutions[0].country_code | MX |
| authorships[1].institutions[0].display_name | Polytechnic University of San Luis Potosí |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hugo Gonzalez |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Academia de Tecnologías de la Información y Telemática, Universidad Politécnica de San Luis Potosí, San Luis Potosí 78363, Mexico |
| authorships[2].author.id | https://openalex.org/A5076836614 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2188-9892 |
| authorships[2].author.display_name | Rafael Martínez-Peláez |
| authorships[2].countries | MX |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210098913 |
| authorships[2].affiliations[0].raw_affiliation_string | Facultad de Ingenierías y Tecnologías, Universidad De La Salle Bajío, Av. Universidad 602, León 37150, Mexico |
| authorships[2].institutions[0].id | https://openalex.org/I4210098913 |
| authorships[2].institutions[0].ror | https://ror.org/00vf1vw09 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210098913 |
| authorships[2].institutions[0].country_code | MX |
| authorships[2].institutions[0].display_name | Universidad de La Salle Bajío |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rafael Martínez-Peláez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Facultad de Ingenierías y Tecnologías, Universidad De La Salle Bajío, Av. Universidad 602, León 37150, Mexico |
| authorships[3].author.id | https://openalex.org/A5084651171 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3244-0129 |
| authorships[3].author.display_name | Luis J. Mena |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4403386673 |
| authorships[3].affiliations[0].raw_affiliation_string | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| authorships[3].institutions[0].id | https://openalex.org/I4403386673 |
| authorships[3].institutions[0].ror | https://ror.org/00mwm0e05 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4403386673 |
| authorships[3].institutions[0].country_code | |
| authorships[3].institutions[0].display_name | Universidad Politécnica de Sinaloa |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Luis J. Mena |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| authorships[4].author.id | https://openalex.org/A5103249406 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-3327-8562 |
| authorships[4].author.display_name | Alberto Ochoa-Brust |
| authorships[4].countries | MX |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I916541031 |
| authorships[4].affiliations[0].raw_affiliation_string | Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333, Colima 28040, Mexico |
| authorships[4].institutions[0].id | https://openalex.org/I916541031 |
| authorships[4].institutions[0].ror | https://ror.org/04znxe670 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I916541031 |
| authorships[4].institutions[0].country_code | MX |
| authorships[4].institutions[0].display_name | Universidad de Colima |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Alberto Ochoa-Brust |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Facultad de Ingeniería Mecánica y Eléctrica, Universidad de Colima, Av. Universidad 333, Colima 28040, Mexico |
| authorships[5].author.id | https://openalex.org/A5071933590 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | E. Moreno-García |
| authorships[5].countries | MX |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I4210131529 |
| authorships[5].affiliations[0].raw_affiliation_string | Dirección de Posgrado e investigación, Instituto Tecnológico de Tepic, Tepic 63175, Mexico |
| authorships[5].institutions[0].id | https://openalex.org/I4210131529 |
| authorships[5].institutions[0].ror | https://ror.org/0377f1g25 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210131529 |
| authorships[5].institutions[0].country_code | MX |
| authorships[5].institutions[0].display_name | Instituto Tecnológico de Tepic |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Efraín Moreno-García |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Dirección de Posgrado e investigación, Instituto Tecnológico de Tepic, Tepic 63175, Mexico |
| authorships[6].author.id | https://openalex.org/A5014834531 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-9118-8042 |
| authorships[6].author.display_name | Vanessa G. Félix |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4403386673 |
| authorships[6].affiliations[0].raw_affiliation_string | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| authorships[6].institutions[0].id | https://openalex.org/I4403386673 |
| authorships[6].institutions[0].ror | https://ror.org/00mwm0e05 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I4403386673 |
| authorships[6].institutions[0].country_code | |
| authorships[6].institutions[0].display_name | Universidad Politécnica de Sinaloa |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vanessa G. Félix |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| authorships[7].author.id | https://openalex.org/A5036405982 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-1429-3660 |
| authorships[7].author.display_name | Rodolfo Ostos |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I4403386673 |
| authorships[7].affiliations[0].raw_affiliation_string | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| authorships[7].institutions[0].id | https://openalex.org/I4403386673 |
| authorships[7].institutions[0].ror | https://ror.org/00mwm0e05 |
| authorships[7].institutions[0].type | education |
| authorships[7].institutions[0].lineage | https://openalex.org/I4403386673 |
| authorships[7].institutions[0].country_code | |
| authorships[7].institutions[0].display_name | Universidad Politécnica de Sinaloa |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Rodolfo Ostos |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Unidad Académica de Computación, Universidad Politécnica de Sinaloa, Ctra. Libre Mazatlán Higueras Km 3, Mazatlán 82199, Mexico |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Framework for Generating Personalized Network Datasets for NIDS Based on Traffic Aggregation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10400 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Network Security and Intrusion Detection |
| related_works | https://openalex.org/W2294483539, https://openalex.org/W2378449000, https://openalex.org/W2938399969, https://openalex.org/W3187581118, https://openalex.org/W3143747655, https://openalex.org/W2002178493, https://openalex.org/W2901835651, https://openalex.org/W2883616266, https://openalex.org/W186576250, https://openalex.org/W2372254325 |
| cited_by_count | 8 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s22051847 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s22051847 |
| primary_location.id | doi:10.3390/s22051847 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/22/5/1847/pdf?version=1645847400 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s22051847 |
| publication_date | 2022-02-26 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W3132109934, https://openalex.org/W3093410479, https://openalex.org/W3120973779, https://openalex.org/W2031163547, https://openalex.org/W3121493031, https://openalex.org/W2077137143, https://openalex.org/W1999427165, https://openalex.org/W3025093231, https://openalex.org/W2955155733, https://openalex.org/W2008224380, https://openalex.org/W2077488147, https://openalex.org/W2952956474, https://openalex.org/W3119524937, https://openalex.org/W6792038549, https://openalex.org/W2040333627, https://openalex.org/W2157895134, https://openalex.org/W2205758592, https://openalex.org/W1674877186, https://openalex.org/W6682891771, https://openalex.org/W27434444, https://openalex.org/W2027283610, https://openalex.org/W3205323312, https://openalex.org/W571200655, https://openalex.org/W3175217968, https://openalex.org/W2784664815, https://openalex.org/W2148143831, https://openalex.org/W85350352, https://openalex.org/W1994410331, https://openalex.org/W2604808181, https://openalex.org/W2768793959, https://openalex.org/W3044535915, https://openalex.org/W3212929491, https://openalex.org/W2999309192, https://openalex.org/W2918408501, https://openalex.org/W3126232929, https://openalex.org/W3030391949, https://openalex.org/W2155195660, https://openalex.org/W3138124458 |
| referenced_works_count | 38 |
| abstract_inverted_index.A | 59 |
| abstract_inverted_index.a | 23, 27, 47, 105 |
| abstract_inverted_index.In | 0, 43 |
| abstract_inverted_index.by | 68 |
| abstract_inverted_index.in | 91 |
| abstract_inverted_index.of | 7, 13, 39, 49, 56, 86, 93, 95 |
| abstract_inverted_index.on | 36 |
| abstract_inverted_index.to | 21, 71 |
| abstract_inverted_index.we | 3, 45 |
| abstract_inverted_index.Our | 17 |
| abstract_inverted_index.The | 84 |
| abstract_inverted_index.and | 54, 98 |
| abstract_inverted_index.for | 10, 30, 51, 81 |
| abstract_inverted_index.new | 60 |
| abstract_inverted_index.our | 73 |
| abstract_inverted_index.set | 48 |
| abstract_inverted_index.the | 5, 11, 37, 69, 87, 99 |
| abstract_inverted_index.was | 20, 66, 89 |
| abstract_inverted_index.good | 106 |
| abstract_inverted_index.main | 18 |
| abstract_inverted_index.real | 40 |
| abstract_inverted_index.task | 12 |
| abstract_inverted_index.that | 25 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.with | 62, 76 |
| abstract_inverted_index.based | 35 |
| abstract_inverted_index.data. | 83 |
| abstract_inverted_index.terms | 92 |
| abstract_inverted_index.tools | 50 |
| abstract_inverted_index.(0.97) | 97 |
| abstract_inverted_index.assess | 72 |
| abstract_inverted_index.botnet | 63 |
| abstract_inverted_index.method | 75 |
| abstract_inverted_index.paper, | 2 |
| abstract_inverted_index.(0.94), | 103 |
| abstract_inverted_index.dataset | 8, 61 |
| abstract_inverted_index.develop | 22 |
| abstract_inverted_index.machine | 77 |
| abstract_inverted_index.network | 14, 32, 41, 64 |
| abstract_inverted_index.overall | 107 |
| abstract_inverted_index.problem | 6 |
| abstract_inverted_index.process | 29 |
| abstract_inverted_index.showing | 104 |
| abstract_inverted_index.traces. | 42 |
| abstract_inverted_index.traffic | 33, 57, 65 |
| abstract_inverted_index.F1-score | 96 |
| abstract_inverted_index.Matthews | 100 |
| abstract_inverted_index.average. | 109 |
| abstract_inverted_index.complete | 28 |
| abstract_inverted_index.datasets | 34 |
| abstract_inverted_index.labeling | 55 |
| abstract_inverted_index.learning | 78 |
| abstract_inverted_index.proposed | 46, 74 |
| abstract_inverted_index.provides | 26 |
| abstract_inverted_index.scarcity | 9 |
| abstract_inverted_index.suitable | 80 |
| abstract_inverted_index.addition, | 44 |
| abstract_inverted_index.addressed | 4 |
| abstract_inverted_index.attribute | 52 |
| abstract_inverted_index.evaluated | 90 |
| abstract_inverted_index.framework | 24, 70 |
| abstract_inverted_index.generated | 67 |
| abstract_inverted_index.intrusion | 15 |
| abstract_inverted_index.sessions. | 58 |
| abstract_inverted_index.algorithms | 79 |
| abstract_inverted_index.detection. | 16 |
| abstract_inverted_index.extraction | 53 |
| abstract_inverted_index.generating | 31 |
| abstract_inverted_index.unbalanced | 82 |
| abstract_inverted_index.Coefficient | 102 |
| abstract_inverted_index.Correlation | 101 |
| abstract_inverted_index.aggregation | 38 |
| abstract_inverted_index.classifiers | 88 |
| abstract_inverted_index.performance | 85, 108 |
| abstract_inverted_index.contribution | 19 |
| abstract_inverted_index.macro-averages | 94 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| corresponding_author_ids | https://openalex.org/A5084651171 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 8 |
| corresponding_institution_ids | https://openalex.org/I4403386673 |
| citation_normalized_percentile.value | 0.7896231 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |