A Novel Hybrid Approach for Driver Drowsiness Detection Using a Custom Deep Learning Model Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3438617
Driver Drowsiness Detection (D3) is a challenging task as it requires analysis based on various behavioral and physiological signs such as health issues, mental stress, and exhaustion. Data analytics reveals that driver drowsiness is the reason for one-fifth of all traffic accidents worldwide. Thus, safety devices are valuable for alerting sleepy drivers regarding more danger that may occur. Constant real-time drowsiness detection in complex conditions and denoting is still an open issue. However, facing these challenges, this article proposed a technique called Driver Drowsiness Detection using Custom Deep Learning Model (D3-CDLM). This approach contains four different modules: In the given procedure the investigation and exploration include, 1) feature extraction and selection; 2) machine learning and ensemble methods; 3) deep learning; and 4) the combination of the two, Hybrid. The first operation computes HOG, which stands for Histogram of Oriented Gradient, which is rotation and illumination invariant and resistant to the information in the local areas. Then Principal Component Analysis or PCA is used to obtain the best or top HOG features that are used as inputs to machine learning and ensemble methods-based modules. For hard to learn facial features, transfer learning is also carried out, and a new 30-layer CNNs structure is proposed called CDLM. Finally, the hybrid module’s top features are investigated using the PCA control of the architecture in coordination with the proposed CDLM for detecting drowsiness. Empirical analysis that encompasses all districts were applied on Yawning Detection Dataset. The results reveal that the developed and designed deep learning and hybrid modules acquire better accuracy than the proposed and utilized machine learning-based module along with the compared existing approaches in the pertinent literature.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3438617
- OA Status
- gold
- Cited By
- 14
- References
- 62
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401326137
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401326137Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3438617Digital Object Identifier
- Title
-
A Novel Hybrid Approach for Driver Drowsiness Detection Using a Custom Deep Learning ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Muhammad Ramzan, Adnan Abid, Muhammad Fayyaz, Tahani Jaser Alahmadi, Haitham Nobanee, Amjad RehmanList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3438617Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.1109/access.2024.3438617Direct OA link when available
- Concepts
-
Computer science, Artificial intelligence, Deep learning, Histogram, Ensemble learning, Feature extraction, Histogram of oriented gradients, Transfer of learning, Principal component analysis, Pattern recognition (psychology), Machine learning, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 12, 2024: 2Per-year citation counts (last 5 years)
- References (count)
-
62Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401326137 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3438617 |
| ids.doi | https://doi.org/10.1109/access.2024.3438617 |
| ids.openalex | https://openalex.org/W4401326137 |
| fwci | 15.35012618 |
| type | article |
| title | A Novel Hybrid Approach for Driver Drowsiness Detection Using a Custom Deep Learning Model |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 126884 |
| biblio.first_page | 126866 |
| topics[0].id | https://openalex.org/T11373 |
| topics[0].field.id | https://openalex.org/fields/32 |
| topics[0].field.display_name | Psychology |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3205 |
| topics[0].subfield.display_name | Experimental and Cognitive Psychology |
| topics[0].display_name | Sleep and Work-Related Fatigue |
| topics[1].id | https://openalex.org/T12006 |
| topics[1].field.id | https://openalex.org/fields/32 |
| topics[1].field.display_name | Psychology |
| topics[1].score | 0.9323999881744385 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/3207 |
| topics[1].subfield.display_name | Social Psychology |
| topics[1].display_name | Ergonomics and Musculoskeletal Disorders |
| topics[2].id | https://openalex.org/T12406 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9128999710083008 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2210 |
| topics[2].subfield.display_name | Mechanical Engineering |
| topics[2].display_name | IoT and GPS-based Vehicle Safety Systems |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7892639636993408 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C154945302 |
| concepts[1].level | 1 |
| concepts[1].score | 0.687404990196228 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[1].display_name | Artificial intelligence |
| concepts[2].id | https://openalex.org/C108583219 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6273900270462036 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q197536 |
| concepts[2].display_name | Deep learning |
| concepts[3].id | https://openalex.org/C53533937 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5832893252372742 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[3].display_name | Histogram |
| concepts[4].id | https://openalex.org/C45942800 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5360541343688965 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q245652 |
| concepts[4].display_name | Ensemble learning |
| concepts[5].id | https://openalex.org/C52622490 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5189292430877686 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[5].display_name | Feature extraction |
| concepts[6].id | https://openalex.org/C17426736 |
| concepts[6].level | 4 |
| concepts[6].score | 0.5029863715171814 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q419918 |
| concepts[6].display_name | Histogram of oriented gradients |
| concepts[7].id | https://openalex.org/C150899416 |
| concepts[7].level | 2 |
| concepts[7].score | 0.5023524761199951 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1820378 |
| concepts[7].display_name | Transfer of learning |
| concepts[8].id | https://openalex.org/C27438332 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49347221851348877 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2873 |
| concepts[8].display_name | Principal component analysis |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4367266893386841 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C119857082 |
| concepts[10].level | 1 |
| concepts[10].score | 0.4030509293079376 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[10].display_name | Machine learning |
| concepts[11].id | https://openalex.org/C115961682 |
| concepts[11].level | 2 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[11].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7892639636993408 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[1].score | 0.687404990196228 |
| keywords[1].display_name | Artificial intelligence |
| keywords[2].id | https://openalex.org/keywords/deep-learning |
| keywords[2].score | 0.6273900270462036 |
| keywords[2].display_name | Deep learning |
| keywords[3].id | https://openalex.org/keywords/histogram |
| keywords[3].score | 0.5832893252372742 |
| keywords[3].display_name | Histogram |
| keywords[4].id | https://openalex.org/keywords/ensemble-learning |
| keywords[4].score | 0.5360541343688965 |
| keywords[4].display_name | Ensemble learning |
| keywords[5].id | https://openalex.org/keywords/feature-extraction |
| keywords[5].score | 0.5189292430877686 |
| keywords[5].display_name | Feature extraction |
| keywords[6].id | https://openalex.org/keywords/histogram-of-oriented-gradients |
| keywords[6].score | 0.5029863715171814 |
| keywords[6].display_name | Histogram of oriented gradients |
| keywords[7].id | https://openalex.org/keywords/transfer-of-learning |
| keywords[7].score | 0.5023524761199951 |
| keywords[7].display_name | Transfer of learning |
| keywords[8].id | https://openalex.org/keywords/principal-component-analysis |
| keywords[8].score | 0.49347221851348877 |
| keywords[8].display_name | Principal component analysis |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4367266893386841 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/machine-learning |
| keywords[10].score | 0.4030509293079376 |
| keywords[10].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3438617 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3438617 |
| locations[1].id | pmh:oai:doaj.org/article:315f0e8ab81742d9973859446439d40d |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 126866-126884 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/315f0e8ab81742d9973859446439d40d |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5059496118 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-1770-8905 |
| authorships[0].author.display_name | Muhammad Ramzan |
| authorships[0].countries | PK |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I87482320 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Management and Technology, Lahore, Pakistan |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I160968435 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Software Engineering, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[0].institutions[0].id | https://openalex.org/I87482320 |
| authorships[0].institutions[0].ror | https://ror.org/0095xcq10 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I87482320 |
| authorships[0].institutions[0].country_code | PK |
| authorships[0].institutions[0].display_name | University of Management and Technology |
| authorships[0].institutions[1].id | https://openalex.org/I160968435 |
| authorships[0].institutions[1].ror | https://ror.org/0086rpr26 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I160968435 |
| authorships[0].institutions[1].country_code | PK |
| authorships[0].institutions[1].display_name | University of Sargodha |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Muhammad Ramzan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, University of Management and Technology, Lahore, Pakistan, Department of Software Engineering, Faculty of Computing and Information Technology, University of Sargodha, Sargodha, Pakistan |
| authorships[1].author.id | https://openalex.org/A5010064223 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2602-2876 |
| authorships[1].author.display_name | Adnan Abid |
| authorships[1].countries | PK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I87482320 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science, University of Management and Technology, Lahore, Pakistan |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I1323252656, https://openalex.org/I172780181 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Data Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore, Pakistan |
| authorships[1].institutions[0].id | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].ror | https://ror.org/00ngv8j44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I1323252656 |
| authorships[1].institutions[0].country_code | PK |
| authorships[1].institutions[0].display_name | Information Technology University |
| authorships[1].institutions[1].id | https://openalex.org/I87482320 |
| authorships[1].institutions[1].ror | https://ror.org/0095xcq10 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I87482320 |
| authorships[1].institutions[1].country_code | PK |
| authorships[1].institutions[1].display_name | University of Management and Technology |
| authorships[1].institutions[2].id | https://openalex.org/I172780181 |
| authorships[1].institutions[2].ror | https://ror.org/011maz450 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I172780181 |
| authorships[1].institutions[2].country_code | PK |
| authorships[1].institutions[2].display_name | University of the Punjab |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Adnan Abid |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science, University of Management and Technology, Lahore, Pakistan, Department of Data Science, Faculty of Computing and Information Technology, University of the Punjab, Lahore, Pakistan |
| authorships[2].author.id | https://openalex.org/A5010886022 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0909-4539 |
| authorships[2].author.display_name | Muhammad Fayyaz |
| authorships[2].countries | PK |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I201384688 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science, FAST - National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Chiniot, Pakistan |
| authorships[2].institutions[0].id | https://openalex.org/I201384688 |
| authorships[2].institutions[0].ror | https://ror.org/003eyb898 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I201384688 |
| authorships[2].institutions[0].country_code | PK |
| authorships[2].institutions[0].display_name | National University of Computer and Emerging Sciences |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Muhammad Fayyaz |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, FAST - National University of Computer and Emerging Sciences, Chiniot-Faisalabad Campus, Chiniot, Pakistan |
| authorships[3].author.id | https://openalex.org/A5041891989 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0067-692X |
| authorships[3].author.display_name | Tahani Jaser Alahmadi |
| authorships[3].countries | SA |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I106778892 |
| authorships[3].affiliations[0].raw_affiliation_string | Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia |
| authorships[3].institutions[0].id | https://openalex.org/I106778892 |
| authorships[3].institutions[0].ror | https://ror.org/05b0cyh02 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I106778892 |
| authorships[3].institutions[0].country_code | SA |
| authorships[3].institutions[0].display_name | Princess Nourah bint Abdulrahman University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Tahani Jaser Alahmadi |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, Saudi Arabia |
| authorships[4].author.id | https://openalex.org/A5043334531 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4424-5600 |
| authorships[4].author.display_name | Haitham Nobanee |
| authorships[4].countries | AE |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I117222138 |
| authorships[4].affiliations[0].raw_affiliation_string | College of Business, Abu Dhabi University, Abu Dhabi, United Arab Emirates |
| authorships[4].institutions[0].id | https://openalex.org/I117222138 |
| authorships[4].institutions[0].ror | https://ror.org/01r3kjq03 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I117222138 |
| authorships[4].institutions[0].country_code | AE |
| authorships[4].institutions[0].display_name | Abu Dhabi University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Haitham Nobanee |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | College of Business, Abu Dhabi University, Abu Dhabi, United Arab Emirates |
| authorships[5].author.id | https://openalex.org/A5062125413 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-3817-2655 |
| authorships[5].author.display_name | Amjad Rehman |
| authorships[5].countries | SA |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I142024983 |
| authorships[5].affiliations[0].raw_affiliation_string | Artificial Intelligence and Data Analytics Laboratory (AIDA), CCIS, Prince Sultan University, Riyadh, Saudi Arabia |
| authorships[5].institutions[0].id | https://openalex.org/I142024983 |
| authorships[5].institutions[0].ror | https://ror.org/053mqrf26 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I142024983 |
| authorships[5].institutions[0].country_code | SA |
| authorships[5].institutions[0].display_name | Prince Sultan University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Amjad Rehman |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Artificial Intelligence and Data Analytics Laboratory (AIDA), CCIS, Prince Sultan University, Riyadh, Saudi Arabia |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.1109/access.2024.3438617 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Hybrid Approach for Driver Drowsiness Detection Using a Custom Deep Learning Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11373 |
| primary_topic.field.id | https://openalex.org/fields/32 |
| primary_topic.field.display_name | Psychology |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3205 |
| primary_topic.subfield.display_name | Experimental and Cognitive Psychology |
| primary_topic.display_name | Sleep and Work-Related Fatigue |
| related_works | https://openalex.org/W2071599417, https://openalex.org/W4385398839, https://openalex.org/W2048716406, https://openalex.org/W1964725559, https://openalex.org/W4384700341, https://openalex.org/W2979608518, https://openalex.org/W4394759804, https://openalex.org/W3003960249, https://openalex.org/W2045053268, https://openalex.org/W1870444468 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 12 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3438617 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3438617 |
| primary_location.id | doi:10.1109/access.2024.3438617 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3438617 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4239509191, https://openalex.org/W2966264335, https://openalex.org/W2923350720, https://openalex.org/W3106596522, https://openalex.org/W3133565772, https://openalex.org/W3035112847, https://openalex.org/W3044774336, https://openalex.org/W3200619156, https://openalex.org/W2943512776, https://openalex.org/W3176462845, https://openalex.org/W2907075052, https://openalex.org/W3011805707, https://openalex.org/W2912729179, https://openalex.org/W2945504608, https://openalex.org/W2738749209, https://openalex.org/W2783618220, https://openalex.org/W1977210227, https://openalex.org/W2107998827, https://openalex.org/W2802516476, https://openalex.org/W2242980078, https://openalex.org/W2139261343, https://openalex.org/W227339781, https://openalex.org/W2244991220, https://openalex.org/W3194411726, https://openalex.org/W2979979528, https://openalex.org/W2982636697, https://openalex.org/W2744698444, https://openalex.org/W4220971840, https://openalex.org/W2605351369, https://openalex.org/W4375851409, https://openalex.org/W3186513807, https://openalex.org/W2987022186, https://openalex.org/W3197541072, https://openalex.org/W3178880767, https://openalex.org/W3120615410, https://openalex.org/W2060230335, https://openalex.org/W3180815602, https://openalex.org/W3100389826, https://openalex.org/W4320484936, https://openalex.org/W2944979876, https://openalex.org/W2912924939, https://openalex.org/W4400762160, https://openalex.org/W3088162569, https://openalex.org/W4361214844, https://openalex.org/W3153138486, https://openalex.org/W3046626379, https://openalex.org/W4312836729, https://openalex.org/W3207598679, https://openalex.org/W3028257134, https://openalex.org/W3021810042, https://openalex.org/W3175738057, https://openalex.org/W3081539007, https://openalex.org/W2101956459, https://openalex.org/W2785509179, https://openalex.org/W2948593529, https://openalex.org/W3185415038, https://openalex.org/W2892601927, https://openalex.org/W2953832319, https://openalex.org/W6810966893, https://openalex.org/W4224305276, https://openalex.org/W4376613892, https://openalex.org/W4225949299 |
| referenced_works_count | 62 |
| abstract_inverted_index.a | 5, 79, 196 |
| abstract_inverted_index.1) | 106 |
| abstract_inverted_index.2) | 111 |
| abstract_inverted_index.3) | 117 |
| abstract_inverted_index.4) | 121 |
| abstract_inverted_index.In | 97 |
| abstract_inverted_index.an | 69 |
| abstract_inverted_index.as | 8, 20, 174 |
| abstract_inverted_index.in | 62, 151, 220, 271 |
| abstract_inverted_index.is | 4, 33, 67, 141, 161, 191, 201 |
| abstract_inverted_index.it | 9 |
| abstract_inverted_index.of | 38, 124, 137, 217 |
| abstract_inverted_index.on | 13, 237 |
| abstract_inverted_index.or | 159, 167 |
| abstract_inverted_index.to | 148, 163, 176, 185 |
| abstract_inverted_index.For | 183 |
| abstract_inverted_index.HOG | 169 |
| abstract_inverted_index.PCA | 160, 215 |
| abstract_inverted_index.The | 128, 241 |
| abstract_inverted_index.all | 39, 233 |
| abstract_inverted_index.and | 16, 25, 65, 103, 109, 114, 120, 143, 146, 179, 195, 247, 251, 260 |
| abstract_inverted_index.are | 46, 172, 211 |
| abstract_inverted_index.for | 36, 48, 135, 226 |
| abstract_inverted_index.may | 56 |
| abstract_inverted_index.new | 197 |
| abstract_inverted_index.the | 34, 98, 101, 122, 125, 149, 152, 165, 206, 214, 218, 223, 245, 258, 267, 272 |
| abstract_inverted_index.top | 168, 209 |
| abstract_inverted_index.(D3) | 3 |
| abstract_inverted_index.CDLM | 225 |
| abstract_inverted_index.CNNs | 199 |
| abstract_inverted_index.Data | 27 |
| abstract_inverted_index.Deep | 87 |
| abstract_inverted_index.HOG, | 132 |
| abstract_inverted_index.Then | 155 |
| abstract_inverted_index.This | 91 |
| abstract_inverted_index.also | 192 |
| abstract_inverted_index.best | 166 |
| abstract_inverted_index.deep | 118, 249 |
| abstract_inverted_index.four | 94 |
| abstract_inverted_index.hard | 184 |
| abstract_inverted_index.more | 53 |
| abstract_inverted_index.open | 70 |
| abstract_inverted_index.out, | 194 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.task | 7 |
| abstract_inverted_index.than | 257 |
| abstract_inverted_index.that | 30, 55, 171, 231, 244 |
| abstract_inverted_index.this | 76 |
| abstract_inverted_index.two, | 126 |
| abstract_inverted_index.used | 162, 173 |
| abstract_inverted_index.were | 235 |
| abstract_inverted_index.with | 222, 266 |
| abstract_inverted_index.CDLM. | 204 |
| abstract_inverted_index.Model | 89 |
| abstract_inverted_index.Thus, | 43 |
| abstract_inverted_index.along | 265 |
| abstract_inverted_index.based | 12 |
| abstract_inverted_index.first | 129 |
| abstract_inverted_index.given | 99 |
| abstract_inverted_index.learn | 186 |
| abstract_inverted_index.local | 153 |
| abstract_inverted_index.signs | 18 |
| abstract_inverted_index.still | 68 |
| abstract_inverted_index.these | 74 |
| abstract_inverted_index.using | 85, 213 |
| abstract_inverted_index.which | 133, 140 |
| abstract_inverted_index.Custom | 86 |
| abstract_inverted_index.Driver | 0, 82 |
| abstract_inverted_index.areas. | 154 |
| abstract_inverted_index.better | 255 |
| abstract_inverted_index.called | 81, 203 |
| abstract_inverted_index.danger | 54 |
| abstract_inverted_index.driver | 31 |
| abstract_inverted_index.facial | 187 |
| abstract_inverted_index.facing | 73 |
| abstract_inverted_index.health | 21 |
| abstract_inverted_index.hybrid | 207, 252 |
| abstract_inverted_index.inputs | 175 |
| abstract_inverted_index.issue. | 71 |
| abstract_inverted_index.mental | 23 |
| abstract_inverted_index.module | 264 |
| abstract_inverted_index.obtain | 164 |
| abstract_inverted_index.occur. | 57 |
| abstract_inverted_index.reason | 35 |
| abstract_inverted_index.reveal | 243 |
| abstract_inverted_index.safety | 44 |
| abstract_inverted_index.sleepy | 50 |
| abstract_inverted_index.stands | 134 |
| abstract_inverted_index.Hybrid. | 127 |
| abstract_inverted_index.Yawning | 238 |
| abstract_inverted_index.acquire | 254 |
| abstract_inverted_index.applied | 236 |
| abstract_inverted_index.article | 77 |
| abstract_inverted_index.carried | 193 |
| abstract_inverted_index.complex | 63 |
| abstract_inverted_index.control | 216 |
| abstract_inverted_index.devices | 45 |
| abstract_inverted_index.drivers | 51 |
| abstract_inverted_index.feature | 107 |
| abstract_inverted_index.issues, | 22 |
| abstract_inverted_index.machine | 112, 177, 262 |
| abstract_inverted_index.modules | 253 |
| abstract_inverted_index.results | 242 |
| abstract_inverted_index.reveals | 29 |
| abstract_inverted_index.stress, | 24 |
| abstract_inverted_index.traffic | 40 |
| abstract_inverted_index.various | 14 |
| abstract_inverted_index.30-layer | 198 |
| abstract_inverted_index.Analysis | 158 |
| abstract_inverted_index.Constant | 58 |
| abstract_inverted_index.Dataset. | 240 |
| abstract_inverted_index.Finally, | 205 |
| abstract_inverted_index.However, | 72 |
| abstract_inverted_index.Learning | 88 |
| abstract_inverted_index.Oriented | 138 |
| abstract_inverted_index.accuracy | 256 |
| abstract_inverted_index.alerting | 49 |
| abstract_inverted_index.analysis | 11, 230 |
| abstract_inverted_index.approach | 92 |
| abstract_inverted_index.compared | 268 |
| abstract_inverted_index.computes | 131 |
| abstract_inverted_index.contains | 93 |
| abstract_inverted_index.denoting | 66 |
| abstract_inverted_index.designed | 248 |
| abstract_inverted_index.ensemble | 115, 180 |
| abstract_inverted_index.existing | 269 |
| abstract_inverted_index.features | 170, 210 |
| abstract_inverted_index.include, | 105 |
| abstract_inverted_index.learning | 113, 178, 190, 250 |
| abstract_inverted_index.methods; | 116 |
| abstract_inverted_index.modules. | 182 |
| abstract_inverted_index.modules: | 96 |
| abstract_inverted_index.proposed | 78, 202, 224, 259 |
| abstract_inverted_index.requires | 10 |
| abstract_inverted_index.rotation | 142 |
| abstract_inverted_index.transfer | 189 |
| abstract_inverted_index.utilized | 261 |
| abstract_inverted_index.valuable | 47 |
| abstract_inverted_index.Component | 157 |
| abstract_inverted_index.Detection | 2, 84, 239 |
| abstract_inverted_index.Empirical | 229 |
| abstract_inverted_index.Gradient, | 139 |
| abstract_inverted_index.Histogram | 136 |
| abstract_inverted_index.Principal | 156 |
| abstract_inverted_index.accidents | 41 |
| abstract_inverted_index.analytics | 28 |
| abstract_inverted_index.detecting | 227 |
| abstract_inverted_index.detection | 61 |
| abstract_inverted_index.developed | 246 |
| abstract_inverted_index.different | 95 |
| abstract_inverted_index.districts | 234 |
| abstract_inverted_index.features, | 188 |
| abstract_inverted_index.invariant | 145 |
| abstract_inverted_index.learning; | 119 |
| abstract_inverted_index.one-fifth | 37 |
| abstract_inverted_index.operation | 130 |
| abstract_inverted_index.pertinent | 273 |
| abstract_inverted_index.procedure | 100 |
| abstract_inverted_index.real-time | 59 |
| abstract_inverted_index.regarding | 52 |
| abstract_inverted_index.resistant | 147 |
| abstract_inverted_index.structure | 200 |
| abstract_inverted_index.technique | 80 |
| abstract_inverted_index.(D3-CDLM). | 90 |
| abstract_inverted_index.Drowsiness | 1, 83 |
| abstract_inverted_index.approaches | 270 |
| abstract_inverted_index.behavioral | 15 |
| abstract_inverted_index.conditions | 64 |
| abstract_inverted_index.drowsiness | 32, 60 |
| abstract_inverted_index.extraction | 108 |
| abstract_inverted_index.selection; | 110 |
| abstract_inverted_index.worldwide. | 42 |
| abstract_inverted_index.challenges, | 75 |
| abstract_inverted_index.challenging | 6 |
| abstract_inverted_index.combination | 123 |
| abstract_inverted_index.drowsiness. | 228 |
| abstract_inverted_index.encompasses | 232 |
| abstract_inverted_index.exhaustion. | 26 |
| abstract_inverted_index.exploration | 104 |
| abstract_inverted_index.information | 150 |
| abstract_inverted_index.literature. | 274 |
| abstract_inverted_index.architecture | 219 |
| abstract_inverted_index.coordination | 221 |
| abstract_inverted_index.illumination | 144 |
| abstract_inverted_index.investigated | 212 |
| abstract_inverted_index.investigation | 102 |
| abstract_inverted_index.methods-based | 181 |
| abstract_inverted_index.physiological | 17 |
| abstract_inverted_index.learning-based | 263 |
| abstract_inverted_index.module’s | 208 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 6 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/13 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Climate action |
| citation_normalized_percentile.value | 0.98390579 |
| citation_normalized_percentile.is_in_top_1_percent | True |
| citation_normalized_percentile.is_in_top_10_percent | True |