A Novel Hybrid Pan-Sharpen Method Using IHS Transform and Optimization Article Swipe
YOU?
·
· 2017
· Open Access
·
· DOI: https://doi.org/10.4236/ars.2017.63017
Intensity-hue-saturation (IHS) transform is the most commonly used method for image fusion purpose. Usually, the intensity image is replaced by Panchromatic (PAN) image, or the difference between PAN and intensity image is added to each bands of RGB images. Spatial structure information in the PAN image can be effectively injected into the fused multi-spectral (MS) images using IHS method. However, spectral distortion has become the typical factor deteriorating the quality of fused results. A hybrid image fusion method which integrates IHS and minimum mean-square-error (MMSE) was proposed to mitigate the spectral distortion phenomenon in this study. Firstly, IHS transform was used to derive the intensity image; secondly, the MMSE algorithm was used to fuse the histogram matched PAN image and intensity image; thirdly, optimization calculation was employed to derive the combination coefficients, and the new intensity image could be expressed as the combination of intensity image and PAN image. Fused MS images with high spatial resolution can be generated by inverse IHS transform. In numerical experiments, QuickBird images were used to evaluate the performance of the proposed algorithm. It was found that the spatial resolution was increased significantly; meanwhile, spectral distortion phenomenon was abated in the fusion results.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.4236/ars.2017.63017
- http://www.scirp.org/journal/PaperDownload.aspx?paperID=79461
- OA Status
- diamond
- Cited By
- 4
- References
- 25
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2758158981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2758158981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.4236/ars.2017.63017Digital Object Identifier
- Title
-
A Novel Hybrid Pan-Sharpen Method Using IHS Transform and OptimizationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2017Year of publication
- Publication date
-
2017-01-01Full publication date if available
- Authors
-
Haiyong Ding, Wenzhong ShiList of authors in order
- Landing page
-
https://doi.org/10.4236/ars.2017.63017Publisher landing page
- PDF URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=79461Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.scirp.org/journal/PaperDownload.aspx?paperID=79461Direct OA link when available
- Concepts
-
Panchromatic film, Image fusion, Artificial intelligence, Computer vision, Distortion (music), Image resolution, Hybrid image, Image (mathematics), Mathematics, Histogram, Intensity (physics), RGB color model, Minimum mean square error, Computer science, Optics, Physics, Computer network, Amplifier, Bandwidth (computing), Estimator, StatisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
4Total citation count in OpenAlex
- Citations by year (recent)
-
2024: 1, 2023: 2, 2020: 1Per-year citation counts (last 5 years)
- References (count)
-
25Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2758158981 |
|---|---|
| doi | https://doi.org/10.4236/ars.2017.63017 |
| ids.doi | https://doi.org/10.4236/ars.2017.63017 |
| ids.mag | 2758158981 |
| ids.openalex | https://openalex.org/W2758158981 |
| fwci | 0.25044428 |
| type | article |
| title | A Novel Hybrid Pan-Sharpen Method Using IHS Transform and Optimization |
| biblio.issue | 03 |
| biblio.volume | 06 |
| biblio.last_page | 243 |
| biblio.first_page | 229 |
| topics[0].id | https://openalex.org/T11659 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 1.0 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2214 |
| topics[0].subfield.display_name | Media Technology |
| topics[0].display_name | Advanced Image Fusion Techniques |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9937000274658203 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10688 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9843999743461609 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1707 |
| topics[2].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[2].display_name | Image and Signal Denoising Methods |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C107445234 |
| concepts[0].level | 3 |
| concepts[0].score | 0.850531816482544 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q280995 |
| concepts[0].display_name | Panchromatic film |
| concepts[1].id | https://openalex.org/C69744172 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7438458204269409 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q860822 |
| concepts[1].display_name | Image fusion |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6301076412200928 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C31972630 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5834845304489136 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[3].display_name | Computer vision |
| concepts[4].id | https://openalex.org/C126780896 |
| concepts[4].level | 4 |
| concepts[4].score | 0.5626179575920105 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q899871 |
| concepts[4].display_name | Distortion (music) |
| concepts[5].id | https://openalex.org/C205372480 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5355254411697388 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q210521 |
| concepts[5].display_name | Image resolution |
| concepts[6].id | https://openalex.org/C2778328480 |
| concepts[6].level | 3 |
| concepts[6].score | 0.4612841010093689 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1639904 |
| concepts[6].display_name | Hybrid image |
| concepts[7].id | https://openalex.org/C115961682 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4610428512096405 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[7].display_name | Image (mathematics) |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.4536249041557312 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C53533937 |
| concepts[9].level | 3 |
| concepts[9].score | 0.4523710310459137 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q185020 |
| concepts[9].display_name | Histogram |
| concepts[10].id | https://openalex.org/C93038891 |
| concepts[10].level | 2 |
| concepts[10].score | 0.44225022196769714 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1061524 |
| concepts[10].display_name | Intensity (physics) |
| concepts[11].id | https://openalex.org/C82990744 |
| concepts[11].level | 2 |
| concepts[11].score | 0.42356374859809875 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q166194 |
| concepts[11].display_name | RGB color model |
| concepts[12].id | https://openalex.org/C90652560 |
| concepts[12].level | 3 |
| concepts[12].score | 0.4111078679561615 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11091747 |
| concepts[12].display_name | Minimum mean square error |
| concepts[13].id | https://openalex.org/C41008148 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3932323455810547 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[13].display_name | Computer science |
| concepts[14].id | https://openalex.org/C120665830 |
| concepts[14].level | 1 |
| concepts[14].score | 0.16142749786376953 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[14].display_name | Optics |
| concepts[15].id | https://openalex.org/C121332964 |
| concepts[15].level | 0 |
| concepts[15].score | 0.08399730920791626 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[15].display_name | Physics |
| concepts[16].id | https://openalex.org/C31258907 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[16].display_name | Computer network |
| concepts[17].id | https://openalex.org/C194257627 |
| concepts[17].level | 3 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q211554 |
| concepts[17].display_name | Amplifier |
| concepts[18].id | https://openalex.org/C2776257435 |
| concepts[18].level | 2 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1576430 |
| concepts[18].display_name | Bandwidth (computing) |
| concepts[19].id | https://openalex.org/C185429906 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q1130160 |
| concepts[19].display_name | Estimator |
| concepts[20].id | https://openalex.org/C105795698 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[20].display_name | Statistics |
| keywords[0].id | https://openalex.org/keywords/panchromatic-film |
| keywords[0].score | 0.850531816482544 |
| keywords[0].display_name | Panchromatic film |
| keywords[1].id | https://openalex.org/keywords/image-fusion |
| keywords[1].score | 0.7438458204269409 |
| keywords[1].display_name | Image fusion |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6301076412200928 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-vision |
| keywords[3].score | 0.5834845304489136 |
| keywords[3].display_name | Computer vision |
| keywords[4].id | https://openalex.org/keywords/distortion |
| keywords[4].score | 0.5626179575920105 |
| keywords[4].display_name | Distortion (music) |
| keywords[5].id | https://openalex.org/keywords/image-resolution |
| keywords[5].score | 0.5355254411697388 |
| keywords[5].display_name | Image resolution |
| keywords[6].id | https://openalex.org/keywords/hybrid-image |
| keywords[6].score | 0.4612841010093689 |
| keywords[6].display_name | Hybrid image |
| keywords[7].id | https://openalex.org/keywords/image |
| keywords[7].score | 0.4610428512096405 |
| keywords[7].display_name | Image (mathematics) |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.4536249041557312 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/histogram |
| keywords[9].score | 0.4523710310459137 |
| keywords[9].display_name | Histogram |
| keywords[10].id | https://openalex.org/keywords/intensity |
| keywords[10].score | 0.44225022196769714 |
| keywords[10].display_name | Intensity (physics) |
| keywords[11].id | https://openalex.org/keywords/rgb-color-model |
| keywords[11].score | 0.42356374859809875 |
| keywords[11].display_name | RGB color model |
| keywords[12].id | https://openalex.org/keywords/minimum-mean-square-error |
| keywords[12].score | 0.4111078679561615 |
| keywords[12].display_name | Minimum mean square error |
| keywords[13].id | https://openalex.org/keywords/computer-science |
| keywords[13].score | 0.3932323455810547 |
| keywords[13].display_name | Computer science |
| keywords[14].id | https://openalex.org/keywords/optics |
| keywords[14].score | 0.16142749786376953 |
| keywords[14].display_name | Optics |
| keywords[15].id | https://openalex.org/keywords/physics |
| keywords[15].score | 0.08399730920791626 |
| keywords[15].display_name | Physics |
| language | en |
| locations[0].id | doi:10.4236/ars.2017.63017 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210190353 |
| locations[0].source.issn | 2169-267X, 2169-2688 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-267X |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Advances in Remote Sensing |
| locations[0].source.host_organization | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_name | Scientific Research Publishing |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310320480 |
| locations[0].source.host_organization_lineage_names | Scientific Research Publishing |
| locations[0].license | cc-by |
| locations[0].pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=79461 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Advances in Remote Sensing |
| locations[0].landing_page_url | https://doi.org/10.4236/ars.2017.63017 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101515060 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Haiyong Ding |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I200845125 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[0].institutions[0].id | https://openalex.org/I200845125 |
| authorships[0].institutions[0].ror | https://ror.org/02y0rxk19 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200845125 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Nanjing University of Information Science and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haiyong Ding |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Geography and Remote Sensing, Nanjing University of Information Science and Technology, Nanjing, China |
| authorships[1].author.id | https://openalex.org/A5100644664 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-3886-7027 |
| authorships[1].author.display_name | Wenzhong Shi |
| authorships[1].countries | HK |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I14243506 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| authorships[1].institutions[0].id | https://openalex.org/I14243506 |
| authorships[1].institutions[0].ror | https://ror.org/0030zas98 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I14243506 |
| authorships[1].institutions[0].country_code | HK |
| authorships[1].institutions[0].display_name | Hong Kong Polytechnic University |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Wenzhong Shi |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=79461 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Hybrid Pan-Sharpen Method Using IHS Transform and Optimization |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11659 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 1.0 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2214 |
| primary_topic.subfield.display_name | Media Technology |
| primary_topic.display_name | Advanced Image Fusion Techniques |
| related_works | https://openalex.org/W2368671946, https://openalex.org/W2385264142, https://openalex.org/W2044102280, https://openalex.org/W2380263558, https://openalex.org/W2992121921, https://openalex.org/W1966079689, https://openalex.org/W2418010961, https://openalex.org/W2108591609, https://openalex.org/W1954408549, https://openalex.org/W2093399080 |
| cited_by_count | 4 |
| counts_by_year[0].year | 2024 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2020 |
| counts_by_year[2].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.4236/ars.2017.63017 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210190353 |
| best_oa_location.source.issn | 2169-267X, 2169-2688 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-267X |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Advances in Remote Sensing |
| best_oa_location.source.host_organization | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_name | Scientific Research Publishing |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| best_oa_location.source.host_organization_lineage_names | Scientific Research Publishing |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=79461 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Advances in Remote Sensing |
| best_oa_location.landing_page_url | https://doi.org/10.4236/ars.2017.63017 |
| primary_location.id | doi:10.4236/ars.2017.63017 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210190353 |
| primary_location.source.issn | 2169-267X, 2169-2688 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-267X |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Advances in Remote Sensing |
| primary_location.source.host_organization | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_name | Scientific Research Publishing |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310320480 |
| primary_location.source.host_organization_lineage_names | Scientific Research Publishing |
| primary_location.license | cc-by |
| primary_location.pdf_url | http://www.scirp.org/journal/PaperDownload.aspx?paperID=79461 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Advances in Remote Sensing |
| primary_location.landing_page_url | https://doi.org/10.4236/ars.2017.63017 |
| publication_date | 2017-01-01 |
| publication_year | 2017 |
| referenced_works | https://openalex.org/W2084285154, https://openalex.org/W2106891293, https://openalex.org/W2079515997, https://openalex.org/W2158537567, https://openalex.org/W2107285337, https://openalex.org/W2088538848, https://openalex.org/W2144436897, https://openalex.org/W2149720806, https://openalex.org/W2105090634, https://openalex.org/W2172185514, https://openalex.org/W2126744313, https://openalex.org/W2143697947, https://openalex.org/W1801648077, https://openalex.org/W2130588510, https://openalex.org/W1964517309, https://openalex.org/W2113181621, https://openalex.org/W2065946187, https://openalex.org/W2275221205, https://openalex.org/W3145472506, https://openalex.org/W2076088305, https://openalex.org/W2165651437, https://openalex.org/W2133282658, https://openalex.org/W2047482723, https://openalex.org/W2065757249, https://openalex.org/W1997238646 |
| referenced_works_count | 25 |
| abstract_inverted_index.A | 73 |
| abstract_inverted_index.In | 163 |
| abstract_inverted_index.It | 178 |
| abstract_inverted_index.MS | 150 |
| abstract_inverted_index.as | 140 |
| abstract_inverted_index.be | 47, 138, 157 |
| abstract_inverted_index.by | 19, 159 |
| abstract_inverted_index.in | 42, 93, 194 |
| abstract_inverted_index.is | 3, 17, 31 |
| abstract_inverted_index.of | 36, 70, 143, 174 |
| abstract_inverted_index.or | 23 |
| abstract_inverted_index.to | 33, 87, 101, 112, 127, 170 |
| abstract_inverted_index.IHS | 57, 80, 97, 161 |
| abstract_inverted_index.PAN | 27, 44, 117, 147 |
| abstract_inverted_index.RGB | 37 |
| abstract_inverted_index.and | 28, 81, 119, 132, 146 |
| abstract_inverted_index.can | 46, 156 |
| abstract_inverted_index.for | 9 |
| abstract_inverted_index.has | 62 |
| abstract_inverted_index.new | 134 |
| abstract_inverted_index.the | 4, 14, 24, 43, 51, 64, 68, 89, 103, 107, 114, 129, 133, 141, 172, 175, 182, 195 |
| abstract_inverted_index.was | 85, 99, 110, 125, 179, 185, 192 |
| abstract_inverted_index.(MS) | 54 |
| abstract_inverted_index.MMSE | 108 |
| abstract_inverted_index.each | 34 |
| abstract_inverted_index.fuse | 113 |
| abstract_inverted_index.high | 153 |
| abstract_inverted_index.into | 50 |
| abstract_inverted_index.most | 5 |
| abstract_inverted_index.that | 181 |
| abstract_inverted_index.this | 94 |
| abstract_inverted_index.used | 7, 100, 111, 169 |
| abstract_inverted_index.were | 168 |
| abstract_inverted_index.with | 152 |
| abstract_inverted_index.(IHS) | 1 |
| abstract_inverted_index.(PAN) | 21 |
| abstract_inverted_index.Fused | 149 |
| abstract_inverted_index.added | 32 |
| abstract_inverted_index.bands | 35 |
| abstract_inverted_index.could | 137 |
| abstract_inverted_index.found | 180 |
| abstract_inverted_index.fused | 52, 71 |
| abstract_inverted_index.image | 10, 16, 30, 45, 75, 118, 136, 145 |
| abstract_inverted_index.using | 56 |
| abstract_inverted_index.which | 78 |
| abstract_inverted_index.(MMSE) | 84 |
| abstract_inverted_index.abated | 193 |
| abstract_inverted_index.become | 63 |
| abstract_inverted_index.derive | 102, 128 |
| abstract_inverted_index.factor | 66 |
| abstract_inverted_index.fusion | 11, 76, 196 |
| abstract_inverted_index.hybrid | 74 |
| abstract_inverted_index.image, | 22 |
| abstract_inverted_index.image. | 148 |
| abstract_inverted_index.image; | 105, 121 |
| abstract_inverted_index.images | 55, 151, 167 |
| abstract_inverted_index.method | 8, 77 |
| abstract_inverted_index.study. | 95 |
| abstract_inverted_index.Spatial | 39 |
| abstract_inverted_index.between | 26 |
| abstract_inverted_index.images. | 38 |
| abstract_inverted_index.inverse | 160 |
| abstract_inverted_index.matched | 116 |
| abstract_inverted_index.method. | 58 |
| abstract_inverted_index.minimum | 82 |
| abstract_inverted_index.quality | 69 |
| abstract_inverted_index.spatial | 154, 183 |
| abstract_inverted_index.typical | 65 |
| abstract_inverted_index.Firstly, | 96 |
| abstract_inverted_index.However, | 59 |
| abstract_inverted_index.Usually, | 13 |
| abstract_inverted_index.commonly | 6 |
| abstract_inverted_index.employed | 126 |
| abstract_inverted_index.evaluate | 171 |
| abstract_inverted_index.injected | 49 |
| abstract_inverted_index.mitigate | 88 |
| abstract_inverted_index.proposed | 86, 176 |
| abstract_inverted_index.purpose. | 12 |
| abstract_inverted_index.replaced | 18 |
| abstract_inverted_index.results. | 72, 197 |
| abstract_inverted_index.spectral | 60, 90, 189 |
| abstract_inverted_index.thirdly, | 122 |
| abstract_inverted_index.QuickBird | 166 |
| abstract_inverted_index.algorithm | 109 |
| abstract_inverted_index.expressed | 139 |
| abstract_inverted_index.generated | 158 |
| abstract_inverted_index.histogram | 115 |
| abstract_inverted_index.increased | 186 |
| abstract_inverted_index.intensity | 15, 29, 104, 120, 135, 144 |
| abstract_inverted_index.numerical | 164 |
| abstract_inverted_index.secondly, | 106 |
| abstract_inverted_index.structure | 40 |
| abstract_inverted_index.transform | 2, 98 |
| abstract_inverted_index.algorithm. | 177 |
| abstract_inverted_index.difference | 25 |
| abstract_inverted_index.distortion | 61, 91, 190 |
| abstract_inverted_index.integrates | 79 |
| abstract_inverted_index.meanwhile, | 188 |
| abstract_inverted_index.phenomenon | 92, 191 |
| abstract_inverted_index.resolution | 155, 184 |
| abstract_inverted_index.transform. | 162 |
| abstract_inverted_index.calculation | 124 |
| abstract_inverted_index.combination | 130, 142 |
| abstract_inverted_index.effectively | 48 |
| abstract_inverted_index.information | 41 |
| abstract_inverted_index.performance | 173 |
| abstract_inverted_index.Panchromatic | 20 |
| abstract_inverted_index.experiments, | 165 |
| abstract_inverted_index.optimization | 123 |
| abstract_inverted_index.coefficients, | 131 |
| abstract_inverted_index.deteriorating | 67 |
| abstract_inverted_index.multi-spectral | 53 |
| abstract_inverted_index.significantly; | 187 |
| abstract_inverted_index.mean-square-error | 83 |
| abstract_inverted_index.Intensity-hue-saturation | 0 |
| cited_by_percentile_year.max | 96 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile.value | 0.60869835 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |