A novel linguistic decision making approach based on attribute correlation and EDAS method Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s00500-023-08079-y
One of characteristics of large-scale linguistic decision making problems is that decision information with respect to decision making attributes is derived from multi-sources information. In addition, the number of decision makers, alternatives or criteria of decision making problems in the context of big data are increasingly large. Correlation analysis between decision making attributes has become an important issue of large-scale linguistic decision making problems. In the paper, we concentrate on correlation analysis between decision making attributes to deal with large-scale decision making problems with linguistic intuitionistic fuzzy values. Firstly, we proposed a new similarity measure between two linguistic intuitionistic fuzzy sets to formally define correlation between decision making attributes. Then we propose linguistic intuitionistic fuzzy reducible weighted Maclaurin symmetric mean (LIFRWMSM) operator and linguistic intuitionistic fuzzy reducible weighted dual Maclaurin symmetric mean (LIFRWDMSM) operator to aggregate linguistic intuitionistic fuzzy value decision information of correlational decision making attributes, and analyze several important properties of the two operator. Inspired by evaluation based on distance from average solution (EDAS) method, we design a solution scheme and decision steps to deal with large-scale linguistic intuitionistic fuzzy decision making problems. To show the effectiveness and usefulness of the proposed decision method, we employ the choice of buying a house and the selection of travel destination to demonstrate our method and make comparative analysis with others aggregation operators or methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s00500-023-08079-y
- https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdf
- OA Status
- hybrid
- Cited By
- 6
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4367852667
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4367852667Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s00500-023-08079-yDigital Object Identifier
- Title
-
A novel linguistic decision making approach based on attribute correlation and EDAS methodWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-05-02Full publication date if available
- Authors
-
Qingzhao Li, Yuan Rong, Zheng Pei, Fangling RenList of authors in order
- Landing page
-
https://doi.org/10.1007/s00500-023-08079-yPublisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdfDirect OA link when available
- Concepts
-
Operator (biology), EDAS, Mathematics, Group decision-making, Computer science, Artificial intelligence, Multiple-criteria decision analysis, Data mining, Operations research, Estimation of distribution algorithm, Law, Repressor, Transcription factor, Biochemistry, Chemistry, Political science, GeneTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
6Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 1, 2023: 3Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4367852667 |
|---|---|
| doi | https://doi.org/10.1007/s00500-023-08079-y |
| ids.doi | https://doi.org/10.1007/s00500-023-08079-y |
| ids.openalex | https://openalex.org/W4367852667 |
| fwci | 1.94093426 |
| type | article |
| title | A novel linguistic decision making approach based on attribute correlation and EDAS method |
| biblio.issue | 12 |
| biblio.volume | 27 |
| biblio.last_page | 7771 |
| biblio.first_page | 7751 |
| topics[0].id | https://openalex.org/T10050 |
| topics[0].field.id | https://openalex.org/fields/18 |
| topics[0].field.display_name | Decision Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1803 |
| topics[0].subfield.display_name | Management Science and Operations Research |
| topics[0].display_name | Multi-Criteria Decision Making |
| topics[1].id | https://openalex.org/T13058 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9717000126838684 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2308 |
| topics[1].subfield.display_name | Management, Monitoring, Policy and Law |
| topics[1].display_name | Soil and Land Suitability Analysis |
| topics[2].id | https://openalex.org/T11063 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9311000108718872 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1703 |
| topics[2].subfield.display_name | Computational Theory and Mathematics |
| topics[2].display_name | Rough Sets and Fuzzy Logic |
| is_xpac | False |
| apc_list.value | 2390 |
| apc_list.currency | EUR |
| apc_list.value_usd | 2990 |
| apc_paid.value | 2390 |
| apc_paid.currency | EUR |
| apc_paid.value_usd | 2990 |
| concepts[0].id | https://openalex.org/C17020691 |
| concepts[0].level | 5 |
| concepts[0].score | 0.5551285743713379 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q139677 |
| concepts[0].display_name | Operator (biology) |
| concepts[1].id | https://openalex.org/C49284225 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5428680181503296 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q5322829 |
| concepts[1].display_name | EDAS |
| concepts[2].id | https://openalex.org/C33923547 |
| concepts[2].level | 0 |
| concepts[2].score | 0.49399715662002563 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[2].display_name | Mathematics |
| concepts[3].id | https://openalex.org/C20701700 |
| concepts[3].level | 2 |
| concepts[3].score | 0.4762963354587555 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q388791 |
| concepts[3].display_name | Group decision-making |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4632689952850342 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4404643177986145 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C11105738 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42485445737838745 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1895805 |
| concepts[6].display_name | Multiple-criteria decision analysis |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.3285626769065857 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C42475967 |
| concepts[8].level | 1 |
| concepts[8].score | 0.1726154088973999 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q194292 |
| concepts[8].display_name | Operations research |
| concepts[9].id | https://openalex.org/C162500139 |
| concepts[9].level | 2 |
| concepts[9].score | 0.0743509829044342 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2835887 |
| concepts[9].display_name | Estimation of distribution algorithm |
| concepts[10].id | https://openalex.org/C199539241 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[10].display_name | Law |
| concepts[11].id | https://openalex.org/C158448853 |
| concepts[11].level | 4 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q425218 |
| concepts[11].display_name | Repressor |
| concepts[12].id | https://openalex.org/C86339819 |
| concepts[12].level | 3 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q407384 |
| concepts[12].display_name | Transcription factor |
| concepts[13].id | https://openalex.org/C55493867 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[13].display_name | Biochemistry |
| concepts[14].id | https://openalex.org/C185592680 |
| concepts[14].level | 0 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[14].display_name | Chemistry |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C104317684 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[16].display_name | Gene |
| keywords[0].id | https://openalex.org/keywords/operator |
| keywords[0].score | 0.5551285743713379 |
| keywords[0].display_name | Operator (biology) |
| keywords[1].id | https://openalex.org/keywords/edas |
| keywords[1].score | 0.5428680181503296 |
| keywords[1].display_name | EDAS |
| keywords[2].id | https://openalex.org/keywords/mathematics |
| keywords[2].score | 0.49399715662002563 |
| keywords[2].display_name | Mathematics |
| keywords[3].id | https://openalex.org/keywords/group-decision-making |
| keywords[3].score | 0.4762963354587555 |
| keywords[3].display_name | Group decision-making |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4632689952850342 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4404643177986145 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/multiple-criteria-decision-analysis |
| keywords[6].score | 0.42485445737838745 |
| keywords[6].display_name | Multiple-criteria decision analysis |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.3285626769065857 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/operations-research |
| keywords[8].score | 0.1726154088973999 |
| keywords[8].display_name | Operations research |
| keywords[9].id | https://openalex.org/keywords/estimation-of-distribution-algorithm |
| keywords[9].score | 0.0743509829044342 |
| keywords[9].display_name | Estimation of distribution algorithm |
| language | en |
| locations[0].id | doi:10.1007/s00500-023-08079-y |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S65753830 |
| locations[0].source.issn | 1432-7643, 1433-7479 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 1432-7643 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Soft Computing |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Soft Computing |
| locations[0].landing_page_url | https://doi.org/10.1007/s00500-023-08079-y |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5103192755 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-0340-795X |
| authorships[0].author.display_name | Qingzhao Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I102345215 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Sciences, Xi Hua University, Chengdu, 610039, Sichuan, People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I102345215 |
| authorships[0].institutions[0].ror | https://ror.org/04gwtvf26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I102345215 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Xihua University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Qingzhao Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Sciences, Xi Hua University, Chengdu, 610039, Sichuan, People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5066810703 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7576-5276 |
| authorships[1].author.display_name | Yuan Rong |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I113940042 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Management, Shanghai University, Shanghai, 200444, China |
| authorships[1].institutions[0].id | https://openalex.org/I113940042 |
| authorships[1].institutions[0].ror | https://ror.org/006teas31 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I113940042 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Shanghai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yuan Rong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Management, Shanghai University, Shanghai, 200444, China |
| authorships[2].author.id | https://openalex.org/A5046280013 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-5757-6607 |
| authorships[2].author.display_name | Zheng Pei |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I113940042 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Management, Shanghai University, Shanghai, 200444, China |
| authorships[2].institutions[0].id | https://openalex.org/I113940042 |
| authorships[2].institutions[0].ror | https://ror.org/006teas31 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I113940042 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Shanghai University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Zheng Pei |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Management, Shanghai University, Shanghai, 200444, China |
| authorships[3].author.id | https://openalex.org/A5112125555 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Fangling Ren |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210102412 |
| authorships[3].affiliations[0].raw_affiliation_string | College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China |
| authorships[3].institutions[0].id | https://openalex.org/I4210102412 |
| authorships[3].institutions[0].ror | https://ror.org/01dyr7034 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210102412 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Yan'an University |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fangling Ren |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | College of Mathematics and Computer Science, Yan'an University, Yan'an, Shaanxi, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdf |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A novel linguistic decision making approach based on attribute correlation and EDAS method |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10050 |
| primary_topic.field.id | https://openalex.org/fields/18 |
| primary_topic.field.display_name | Decision Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1803 |
| primary_topic.subfield.display_name | Management Science and Operations Research |
| primary_topic.display_name | Multi-Criteria Decision Making |
| related_works | https://openalex.org/W2302915988, https://openalex.org/W3185772274, https://openalex.org/W4387405519, https://openalex.org/W3193576932, https://openalex.org/W2151097448, https://openalex.org/W2796809906, https://openalex.org/W2989274444, https://openalex.org/W2348660983, https://openalex.org/W2286890209, https://openalex.org/W2913148204 |
| cited_by_count | 6 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1007/s00500-023-08079-y |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S65753830 |
| best_oa_location.source.issn | 1432-7643, 1433-7479 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 1432-7643 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Soft Computing |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Soft Computing |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s00500-023-08079-y |
| primary_location.id | doi:10.1007/s00500-023-08079-y |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S65753830 |
| primary_location.source.issn | 1432-7643, 1433-7479 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 1432-7643 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Soft Computing |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s00500-023-08079-y.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Soft Computing |
| primary_location.landing_page_url | https://doi.org/10.1007/s00500-023-08079-y |
| publication_date | 2023-05-02 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W1980564456, https://openalex.org/W594625170, https://openalex.org/W2966506101, https://openalex.org/W2999574466, https://openalex.org/W2963027093, https://openalex.org/W2809392335, https://openalex.org/W2117827905, https://openalex.org/W2793857475, https://openalex.org/W2259660946, https://openalex.org/W2905748561, https://openalex.org/W2744194414, https://openalex.org/W2976998768, https://openalex.org/W3037508793, https://openalex.org/W3012582342, https://openalex.org/W2885889820, https://openalex.org/W2604308625, https://openalex.org/W2899407261, https://openalex.org/W2884798947, https://openalex.org/W2079024311, https://openalex.org/W3032546408, https://openalex.org/W4230514541, https://openalex.org/W3041354098, https://openalex.org/W2767791375, https://openalex.org/W4240596782, https://openalex.org/W1546970449, https://openalex.org/W2811497295, https://openalex.org/W1580581679, https://openalex.org/W1137073519, https://openalex.org/W979059312, https://openalex.org/W3010346893, https://openalex.org/W2898029823, https://openalex.org/W2951964871, https://openalex.org/W2732135403, https://openalex.org/W2535483340, https://openalex.org/W1971403896, https://openalex.org/W2890403168, https://openalex.org/W3158254482, https://openalex.org/W3014718231, https://openalex.org/W4245152641, https://openalex.org/W3034363875, https://openalex.org/W3010010446, https://openalex.org/W3005736844 |
| referenced_works_count | 42 |
| abstract_inverted_index.a | 92, 170, 203 |
| abstract_inverted_index.In | 25, 65 |
| abstract_inverted_index.To | 186 |
| abstract_inverted_index.an | 56 |
| abstract_inverted_index.by | 158 |
| abstract_inverted_index.in | 39 |
| abstract_inverted_index.is | 10, 20 |
| abstract_inverted_index.of | 2, 4, 29, 35, 42, 59, 143, 153, 192, 201, 208 |
| abstract_inverted_index.on | 70, 161 |
| abstract_inverted_index.or | 33, 223 |
| abstract_inverted_index.to | 16, 77, 102, 135, 176, 211 |
| abstract_inverted_index.we | 68, 90, 111, 168, 197 |
| abstract_inverted_index.One | 1 |
| abstract_inverted_index.and | 123, 148, 173, 190, 205, 215 |
| abstract_inverted_index.are | 45 |
| abstract_inverted_index.big | 43 |
| abstract_inverted_index.has | 54 |
| abstract_inverted_index.new | 93 |
| abstract_inverted_index.our | 213 |
| abstract_inverted_index.the | 27, 40, 66, 154, 188, 193, 199, 206 |
| abstract_inverted_index.two | 97, 155 |
| abstract_inverted_index.Then | 110 |
| abstract_inverted_index.data | 44 |
| abstract_inverted_index.deal | 78, 177 |
| abstract_inverted_index.dual | 129 |
| abstract_inverted_index.from | 22, 163 |
| abstract_inverted_index.make | 216 |
| abstract_inverted_index.mean | 120, 132 |
| abstract_inverted_index.sets | 101 |
| abstract_inverted_index.show | 187 |
| abstract_inverted_index.that | 11 |
| abstract_inverted_index.with | 14, 79, 84, 178, 219 |
| abstract_inverted_index.based | 160 |
| abstract_inverted_index.fuzzy | 87, 100, 115, 126, 139, 182 |
| abstract_inverted_index.house | 204 |
| abstract_inverted_index.issue | 58 |
| abstract_inverted_index.steps | 175 |
| abstract_inverted_index.value | 140 |
| abstract_inverted_index.(EDAS) | 166 |
| abstract_inverted_index.become | 55 |
| abstract_inverted_index.buying | 202 |
| abstract_inverted_index.choice | 200 |
| abstract_inverted_index.define | 104 |
| abstract_inverted_index.design | 169 |
| abstract_inverted_index.employ | 198 |
| abstract_inverted_index.large. | 47 |
| abstract_inverted_index.making | 8, 18, 37, 52, 63, 75, 82, 108, 146, 184 |
| abstract_inverted_index.method | 214 |
| abstract_inverted_index.number | 28 |
| abstract_inverted_index.others | 220 |
| abstract_inverted_index.paper, | 67 |
| abstract_inverted_index.scheme | 172 |
| abstract_inverted_index.travel | 209 |
| abstract_inverted_index.analyze | 149 |
| abstract_inverted_index.average | 164 |
| abstract_inverted_index.between | 50, 73, 96, 106 |
| abstract_inverted_index.context | 41 |
| abstract_inverted_index.derived | 21 |
| abstract_inverted_index.makers, | 31 |
| abstract_inverted_index.measure | 95 |
| abstract_inverted_index.method, | 167, 196 |
| abstract_inverted_index.propose | 112 |
| abstract_inverted_index.respect | 15 |
| abstract_inverted_index.several | 150 |
| abstract_inverted_index.values. | 88 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Firstly, | 89 |
| abstract_inverted_index.Inspired | 157 |
| abstract_inverted_index.analysis | 49, 72, 218 |
| abstract_inverted_index.criteria | 34 |
| abstract_inverted_index.decision | 7, 12, 17, 30, 36, 51, 62, 74, 81, 107, 141, 145, 174, 183, 195 |
| abstract_inverted_index.distance | 162 |
| abstract_inverted_index.formally | 103 |
| abstract_inverted_index.methods. | 224 |
| abstract_inverted_index.operator | 122, 134 |
| abstract_inverted_index.problems | 9, 38, 83 |
| abstract_inverted_index.proposed | 91, 194 |
| abstract_inverted_index.solution | 165, 171 |
| abstract_inverted_index.weighted | 117, 128 |
| abstract_inverted_index.Maclaurin | 118, 130 |
| abstract_inverted_index.addition, | 26 |
| abstract_inverted_index.aggregate | 136 |
| abstract_inverted_index.important | 57, 151 |
| abstract_inverted_index.operator. | 156 |
| abstract_inverted_index.operators | 222 |
| abstract_inverted_index.problems. | 64, 185 |
| abstract_inverted_index.reducible | 116, 127 |
| abstract_inverted_index.selection | 207 |
| abstract_inverted_index.symmetric | 119, 131 |
| abstract_inverted_index.(LIFRWMSM) | 121 |
| abstract_inverted_index.attributes | 19, 53, 76 |
| abstract_inverted_index.evaluation | 159 |
| abstract_inverted_index.linguistic | 6, 61, 85, 98, 113, 124, 137, 180 |
| abstract_inverted_index.properties | 152 |
| abstract_inverted_index.similarity | 94 |
| abstract_inverted_index.usefulness | 191 |
| abstract_inverted_index.(LIFRWDMSM) | 133 |
| abstract_inverted_index.Correlation | 48 |
| abstract_inverted_index.aggregation | 221 |
| abstract_inverted_index.attributes, | 147 |
| abstract_inverted_index.attributes. | 109 |
| abstract_inverted_index.comparative | 217 |
| abstract_inverted_index.concentrate | 69 |
| abstract_inverted_index.correlation | 71, 105 |
| abstract_inverted_index.demonstrate | 212 |
| abstract_inverted_index.destination | 210 |
| abstract_inverted_index.information | 13, 142 |
| abstract_inverted_index.large-scale | 5, 60, 80, 179 |
| abstract_inverted_index.alternatives | 32 |
| abstract_inverted_index.increasingly | 46 |
| abstract_inverted_index.information. | 24 |
| abstract_inverted_index.correlational | 144 |
| abstract_inverted_index.effectiveness | 189 |
| abstract_inverted_index.multi-sources | 23 |
| abstract_inverted_index.intuitionistic | 86, 99, 114, 125, 138, 181 |
| abstract_inverted_index.characteristics | 3 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 90 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.8100000023841858 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile.value | 0.85080389 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |