A Novel Method for Road Anomaly Objects Detection in the Traffic Environment With Multi-Mechanism Fusion Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/access.2024.3359695
In the modern automotive industry, Advanced Driving Assistance Systems (ADAS) have gradually become a standard feature in various types of vehicles, with the important function of detecting road anomalies. The appearance of anomalies on the road can be attributed to unexpected situations while driving, and the current methods for detecting distant or small anomalies are not highly accurate. Therefore, in this paper, a method is proposed that uses semantic segmentation to extract key features from the image, and obtaining a new synthesized image by image resynthesis. Then, segmentation uncertainty and depth information are used to compare the differences between multiple feature maps and the input image to highlight the anomalies. Additionally, a postprocessor is designed to use an anomaly score to enhance the recognition of anomaly target and reduce false positives caused by noise. Experiments are conducted on the Obstacle Track dataset and the Lost and Found dataset, and various methods for detecting anomaly objects are compared. The experimental results demonstrate that the method proposed in this paper can effectively detect un-common objects in the training dataset in road anomaly object detection. It improves the detection rate and reduces the false positive rate based on previous anomaly detection methods. The proposed method presented in this paper achieves high detection rates for both seen and unseen anomaly objects in the training set, which enhances the generalization ability of anomaly detection in the road area of interest.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2024.3359695
- https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdf
- OA Status
- gold
- Cited By
- 2
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392007359
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392007359Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2024.3359695Digital Object Identifier
- Title
-
A Novel Method for Road Anomaly Objects Detection in the Traffic Environment With Multi-Mechanism FusionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-01Full publication date if available
- Authors
-
Wenyan Ci, Jiayin Xuan, Runze Lin, Shan LuList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2024.3359695Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdfDirect OA link when available
- Concepts
-
Anomaly detection, Computer science, Artificial intelligence, False positive paradox, Pattern recognition (psychology), Anomaly (physics), Feature (linguistics), Segmentation, Object detection, Computer vision, Image (mathematics), Image segmentation, Generalization, Data mining, Mathematics, Philosophy, Mathematical analysis, Physics, Condensed matter physics, LinguisticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392007359 |
|---|---|
| doi | https://doi.org/10.1109/access.2024.3359695 |
| ids.doi | https://doi.org/10.1109/access.2024.3359695 |
| ids.openalex | https://openalex.org/W4392007359 |
| fwci | 1.2775571 |
| type | article |
| title | A Novel Method for Road Anomaly Objects Detection in the Traffic Environment With Multi-Mechanism Fusion |
| awards[0].id | https://openalex.org/G900112219 |
| awards[0].funder_id | https://openalex.org/F4320338465 |
| awards[0].display_name | |
| awards[0].funder_award_id | LGG22F030016 |
| awards[0].funder_display_name | Zhejiang Province Public Welfare Technology Application Research Project |
| awards[1].id | https://openalex.org/G213468560 |
| awards[1].funder_id | https://openalex.org/F4320313855 |
| awards[1].display_name | |
| awards[1].funder_award_id | 2023KYCX57 |
| awards[1].funder_display_name | Huzhou University |
| biblio.issue | |
| biblio.volume | 12 |
| biblio.last_page | 28381 |
| biblio.first_page | 28369 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9901999831199646 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T11689 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9793000221252441 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Adversarial Robustness in Machine Learning |
| funders[0].id | https://openalex.org/F4320313855 |
| funders[0].ror | https://ror.org/04mvpxy20 |
| funders[0].display_name | Huzhou University |
| funders[1].id | https://openalex.org/F4320338465 |
| funders[1].ror | |
| funders[1].display_name | Zhejiang Province Public Welfare Technology Application Research Project |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C739882 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8396602869033813 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[0].display_name | Anomaly detection |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7624839544296265 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6785314679145813 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C64869954 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6116411685943604 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1859747 |
| concepts[3].display_name | False positive paradox |
| concepts[4].id | https://openalex.org/C153180895 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5933853983879089 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[4].display_name | Pattern recognition (psychology) |
| concepts[5].id | https://openalex.org/C12997251 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5855603814125061 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q567560 |
| concepts[5].display_name | Anomaly (physics) |
| concepts[6].id | https://openalex.org/C2776401178 |
| concepts[6].level | 2 |
| concepts[6].score | 0.5443115234375 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[6].display_name | Feature (linguistics) |
| concepts[7].id | https://openalex.org/C89600930 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49067771434783936 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[7].display_name | Segmentation |
| concepts[8].id | https://openalex.org/C2776151529 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4576399326324463 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3045304 |
| concepts[8].display_name | Object detection |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.4489353597164154 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C115961682 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43497195839881897 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[10].display_name | Image (mathematics) |
| concepts[11].id | https://openalex.org/C124504099 |
| concepts[11].level | 3 |
| concepts[11].score | 0.4291064739227295 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[11].display_name | Image segmentation |
| concepts[12].id | https://openalex.org/C177148314 |
| concepts[12].level | 2 |
| concepts[12].score | 0.42437100410461426 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q170084 |
| concepts[12].display_name | Generalization |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.33939364552497864 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.10827001929283142 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C138885662 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[15].display_name | Philosophy |
| concepts[16].id | https://openalex.org/C134306372 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[16].display_name | Mathematical analysis |
| concepts[17].id | https://openalex.org/C121332964 |
| concepts[17].level | 0 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[17].display_name | Physics |
| concepts[18].id | https://openalex.org/C26873012 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q214781 |
| concepts[18].display_name | Condensed matter physics |
| concepts[19].id | https://openalex.org/C41895202 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[19].display_name | Linguistics |
| keywords[0].id | https://openalex.org/keywords/anomaly-detection |
| keywords[0].score | 0.8396602869033813 |
| keywords[0].display_name | Anomaly detection |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7624839544296265 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6785314679145813 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/false-positive-paradox |
| keywords[3].score | 0.6116411685943604 |
| keywords[3].display_name | False positive paradox |
| keywords[4].id | https://openalex.org/keywords/pattern-recognition |
| keywords[4].score | 0.5933853983879089 |
| keywords[4].display_name | Pattern recognition (psychology) |
| keywords[5].id | https://openalex.org/keywords/anomaly |
| keywords[5].score | 0.5855603814125061 |
| keywords[5].display_name | Anomaly (physics) |
| keywords[6].id | https://openalex.org/keywords/feature |
| keywords[6].score | 0.5443115234375 |
| keywords[6].display_name | Feature (linguistics) |
| keywords[7].id | https://openalex.org/keywords/segmentation |
| keywords[7].score | 0.49067771434783936 |
| keywords[7].display_name | Segmentation |
| keywords[8].id | https://openalex.org/keywords/object-detection |
| keywords[8].score | 0.4576399326324463 |
| keywords[8].display_name | Object detection |
| keywords[9].id | https://openalex.org/keywords/computer-vision |
| keywords[9].score | 0.4489353597164154 |
| keywords[9].display_name | Computer vision |
| keywords[10].id | https://openalex.org/keywords/image |
| keywords[10].score | 0.43497195839881897 |
| keywords[10].display_name | Image (mathematics) |
| keywords[11].id | https://openalex.org/keywords/image-segmentation |
| keywords[11].score | 0.4291064739227295 |
| keywords[11].display_name | Image segmentation |
| keywords[12].id | https://openalex.org/keywords/generalization |
| keywords[12].score | 0.42437100410461426 |
| keywords[12].display_name | Generalization |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.33939364552497864 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.10827001929283142 |
| keywords[14].display_name | Mathematics |
| language | en |
| locations[0].id | doi:10.1109/access.2024.3359695 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2024.3359695 |
| locations[1].id | pmh:oai:doaj.org/article:048aee0e404244879dd960fb4a58d309 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 12, Pp 28369-28381 (2024) |
| locations[1].landing_page_url | https://doaj.org/article/048aee0e404244879dd960fb4a58d309 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5086816563 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0248-637X |
| authorships[0].author.display_name | Wenyan Ci |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I3018263800 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Engineering, Huzhou University, Huzhou, China |
| authorships[0].institutions[0].id | https://openalex.org/I3018263800 |
| authorships[0].institutions[0].ror | https://ror.org/04mvpxy20 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I3018263800 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Huzhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenyan Ci |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Engineering, Huzhou University, Huzhou, China |
| authorships[1].author.id | https://openalex.org/A5003650882 |
| authorships[1].author.orcid | https://orcid.org/0009-0006-4880-6224 |
| authorships[1].author.display_name | Jiayin Xuan |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I3018263800 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Engineering, Huzhou University, Huzhou, China |
| authorships[1].institutions[0].id | https://openalex.org/I3018263800 |
| authorships[1].institutions[0].ror | https://ror.org/04mvpxy20 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I3018263800 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Huzhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jiayin Xuan |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Engineering, Huzhou University, Huzhou, China |
| authorships[2].author.id | https://openalex.org/A5007857511 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-2874-105X |
| authorships[2].author.display_name | Runze Lin |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4391767838 |
| authorships[2].affiliations[0].raw_affiliation_string | State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China |
| authorships[2].institutions[0].id | https://openalex.org/I4391767838 |
| authorships[2].institutions[0].ror | https://ror.org/03a33a786 |
| authorships[2].institutions[0].type | facility |
| authorships[2].institutions[0].lineage | https://openalex.org/I4391767838, https://openalex.org/I76130692 |
| authorships[2].institutions[0].country_code | |
| authorships[2].institutions[0].display_name | State Key Laboratory of Industrial Control Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Runze Lin |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, China |
| authorships[3].author.id | https://openalex.org/A5100732939 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9849-216X |
| authorships[3].author.display_name | Shan Lu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I182722699 |
| authorships[3].affiliations[0].raw_affiliation_string | Institute of Intelligence Science and Engineering, Shenzhen Polytechnic, Shenzhen, China |
| authorships[3].institutions[0].id | https://openalex.org/I182722699 |
| authorships[3].institutions[0].ror | https://ror.org/00d2w9g53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I182722699 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Shenzhen Polytechnic |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Shan Lu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Institute of Intelligence Science and Engineering, Shenzhen Polytechnic, Shenzhen, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Method for Road Anomaly Objects Detection in the Traffic Environment With Multi-Mechanism Fusion |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2806741695, https://openalex.org/W4214835788, https://openalex.org/W4290647774, https://openalex.org/W3189286258, https://openalex.org/W3207797160, https://openalex.org/W3210364259, https://openalex.org/W4300558037, https://openalex.org/W2667207928, https://openalex.org/W2912112202, https://openalex.org/W4377864969 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2024.3359695 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2024.3359695 |
| primary_location.id | doi:10.1109/access.2024.3359695 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/6514899/10443367.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2024.3359695 |
| publication_date | 2024-01-01 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2174958781, https://openalex.org/W1975680478, https://openalex.org/W2032325911, https://openalex.org/W3131560079, https://openalex.org/W2560023338, https://openalex.org/W2787091153, https://openalex.org/W2769735038, https://openalex.org/W6735443497, https://openalex.org/W3042173136, https://openalex.org/W3185176517, https://openalex.org/W3167319137, https://openalex.org/W1903029394, https://openalex.org/W2963881378, https://openalex.org/W6717372056, https://openalex.org/W4213385722, https://openalex.org/W3134257222, https://openalex.org/W6728622933, https://openalex.org/W6674330103, https://openalex.org/W2103328396, https://openalex.org/W2904136081, https://openalex.org/W6756483922, https://openalex.org/W3090238777, https://openalex.org/W3036939397, https://openalex.org/W2796762894, https://openalex.org/W3201876338, https://openalex.org/W2981786146, https://openalex.org/W3110437118, https://openalex.org/W3176640650, https://openalex.org/W6787951251, https://openalex.org/W4319300301, https://openalex.org/W6853533528, https://openalex.org/W6767457696, https://openalex.org/W2962974533, https://openalex.org/W2302255633, https://openalex.org/W3112108839, https://openalex.org/W4300479382, https://openalex.org/W2933610837, https://openalex.org/W2963944506, https://openalex.org/W6794739358, https://openalex.org/W4293406525, https://openalex.org/W2095705004, https://openalex.org/W4377009990, https://openalex.org/W3100850306, https://openalex.org/W4387558949, https://openalex.org/W2903179019, https://openalex.org/W3158106564 |
| referenced_works_count | 46 |
| abstract_inverted_index.a | 13, 62, 79, 111 |
| abstract_inverted_index.In | 0 |
| abstract_inverted_index.It | 182 |
| abstract_inverted_index.an | 117 |
| abstract_inverted_index.be | 37 |
| abstract_inverted_index.by | 83, 132 |
| abstract_inverted_index.in | 16, 59, 165, 173, 177, 203, 217, 229 |
| abstract_inverted_index.is | 64, 113 |
| abstract_inverted_index.of | 19, 25, 31, 124, 226, 233 |
| abstract_inverted_index.on | 33, 137, 194 |
| abstract_inverted_index.or | 51 |
| abstract_inverted_index.to | 39, 70, 94, 106, 115, 120 |
| abstract_inverted_index.The | 29, 157, 199 |
| abstract_inverted_index.and | 44, 77, 89, 102, 127, 142, 145, 148, 187, 213 |
| abstract_inverted_index.are | 54, 92, 135, 155 |
| abstract_inverted_index.can | 36, 168 |
| abstract_inverted_index.for | 48, 151, 210 |
| abstract_inverted_index.key | 72 |
| abstract_inverted_index.new | 80 |
| abstract_inverted_index.not | 55 |
| abstract_inverted_index.the | 1, 22, 34, 45, 75, 96, 103, 108, 122, 138, 143, 162, 174, 184, 189, 218, 223, 230 |
| abstract_inverted_index.use | 116 |
| abstract_inverted_index.Lost | 144 |
| abstract_inverted_index.area | 232 |
| abstract_inverted_index.both | 211 |
| abstract_inverted_index.from | 74 |
| abstract_inverted_index.have | 10 |
| abstract_inverted_index.high | 207 |
| abstract_inverted_index.maps | 101 |
| abstract_inverted_index.rate | 186, 192 |
| abstract_inverted_index.road | 27, 35, 178, 231 |
| abstract_inverted_index.seen | 212 |
| abstract_inverted_index.set, | 220 |
| abstract_inverted_index.that | 66, 161 |
| abstract_inverted_index.this | 60, 166, 204 |
| abstract_inverted_index.used | 93 |
| abstract_inverted_index.uses | 67 |
| abstract_inverted_index.with | 21 |
| abstract_inverted_index.Found | 146 |
| abstract_inverted_index.Then, | 86 |
| abstract_inverted_index.Track | 140 |
| abstract_inverted_index.based | 193 |
| abstract_inverted_index.depth | 90 |
| abstract_inverted_index.false | 129, 190 |
| abstract_inverted_index.image | 82, 84, 105 |
| abstract_inverted_index.input | 104 |
| abstract_inverted_index.paper | 167, 205 |
| abstract_inverted_index.rates | 209 |
| abstract_inverted_index.score | 119 |
| abstract_inverted_index.small | 52 |
| abstract_inverted_index.types | 18 |
| abstract_inverted_index.which | 221 |
| abstract_inverted_index.while | 42 |
| abstract_inverted_index.(ADAS) | 9 |
| abstract_inverted_index.become | 12 |
| abstract_inverted_index.caused | 131 |
| abstract_inverted_index.detect | 170 |
| abstract_inverted_index.highly | 56 |
| abstract_inverted_index.image, | 76 |
| abstract_inverted_index.method | 63, 163, 201 |
| abstract_inverted_index.modern | 2 |
| abstract_inverted_index.noise. | 133 |
| abstract_inverted_index.object | 180 |
| abstract_inverted_index.paper, | 61 |
| abstract_inverted_index.reduce | 128 |
| abstract_inverted_index.target | 126 |
| abstract_inverted_index.unseen | 214 |
| abstract_inverted_index.Driving | 6 |
| abstract_inverted_index.Systems | 8 |
| abstract_inverted_index.ability | 225 |
| abstract_inverted_index.anomaly | 118, 125, 153, 179, 196, 215, 227 |
| abstract_inverted_index.between | 98 |
| abstract_inverted_index.compare | 95 |
| abstract_inverted_index.current | 46 |
| abstract_inverted_index.dataset | 141, 176 |
| abstract_inverted_index.distant | 50 |
| abstract_inverted_index.enhance | 121 |
| abstract_inverted_index.extract | 71 |
| abstract_inverted_index.feature | 15, 100 |
| abstract_inverted_index.methods | 47, 150 |
| abstract_inverted_index.objects | 154, 172, 216 |
| abstract_inverted_index.reduces | 188 |
| abstract_inverted_index.results | 159 |
| abstract_inverted_index.various | 17, 149 |
| abstract_inverted_index.Advanced | 5 |
| abstract_inverted_index.Obstacle | 139 |
| abstract_inverted_index.achieves | 206 |
| abstract_inverted_index.dataset, | 147 |
| abstract_inverted_index.designed | 114 |
| abstract_inverted_index.driving, | 43 |
| abstract_inverted_index.enhances | 222 |
| abstract_inverted_index.features | 73 |
| abstract_inverted_index.function | 24 |
| abstract_inverted_index.improves | 183 |
| abstract_inverted_index.methods. | 198 |
| abstract_inverted_index.multiple | 99 |
| abstract_inverted_index.positive | 191 |
| abstract_inverted_index.previous | 195 |
| abstract_inverted_index.proposed | 65, 164, 200 |
| abstract_inverted_index.semantic | 68 |
| abstract_inverted_index.standard | 14 |
| abstract_inverted_index.training | 175, 219 |
| abstract_inverted_index.accurate. | 57 |
| abstract_inverted_index.anomalies | 32, 53 |
| abstract_inverted_index.compared. | 156 |
| abstract_inverted_index.conducted | 136 |
| abstract_inverted_index.detecting | 26, 49, 152 |
| abstract_inverted_index.detection | 185, 197, 208, 228 |
| abstract_inverted_index.gradually | 11 |
| abstract_inverted_index.highlight | 107 |
| abstract_inverted_index.important | 23 |
| abstract_inverted_index.industry, | 4 |
| abstract_inverted_index.interest. | 234 |
| abstract_inverted_index.obtaining | 78 |
| abstract_inverted_index.positives | 130 |
| abstract_inverted_index.presented | 202 |
| abstract_inverted_index.un-common | 171 |
| abstract_inverted_index.vehicles, | 20 |
| abstract_inverted_index.Assistance | 7 |
| abstract_inverted_index.Therefore, | 58 |
| abstract_inverted_index.anomalies. | 28, 109 |
| abstract_inverted_index.appearance | 30 |
| abstract_inverted_index.attributed | 38 |
| abstract_inverted_index.automotive | 3 |
| abstract_inverted_index.detection. | 181 |
| abstract_inverted_index.situations | 41 |
| abstract_inverted_index.unexpected | 40 |
| abstract_inverted_index.Experiments | 134 |
| abstract_inverted_index.demonstrate | 160 |
| abstract_inverted_index.differences | 97 |
| abstract_inverted_index.effectively | 169 |
| abstract_inverted_index.information | 91 |
| abstract_inverted_index.recognition | 123 |
| abstract_inverted_index.synthesized | 81 |
| abstract_inverted_index.uncertainty | 88 |
| abstract_inverted_index.experimental | 158 |
| abstract_inverted_index.resynthesis. | 85 |
| abstract_inverted_index.segmentation | 69, 87 |
| abstract_inverted_index.Additionally, | 110 |
| abstract_inverted_index.postprocessor | 112 |
| abstract_inverted_index.generalization | 224 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/11 |
| sustainable_development_goals[0].score | 0.7300000190734863 |
| sustainable_development_goals[0].display_name | Sustainable cities and communities |
| citation_normalized_percentile.value | 0.76468471 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |