A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude Features Article Swipe
YOU?
·
· 2015
· Open Access
·
· DOI: https://doi.org/10.25103/jestr.085.22
Spectral similarity measure is the basis of spectral information extraction. The description of spectral features is the key \nto spectral similarity measure. To express the spectral shape and amplitude features reasonably, this paper presents the \ndefinition of shape and amplitude feature vector, constructs the shape feature distance vector and amplitude feature \ndistance vector, proposes the spectral similarity measure by fusing shape and amplitude features (SAF), and discloses the \nrelationship of fusing SAF with Euclidean distance and spectral information divergence. Different measures were tested \non the basis of United States Geological Survey (USGS) mineral_beckman_430. Generally, measures by integrating SAF \nachieve the highest accuracy, followed by measures based on shape features and measures based on amplitude features. \nIn measures by integrating SAF, fusing SAF shows the highest accuracy. Fusing SAF expresses the measured results with \nthe inner product of shape and amplitude feature distance vectors, which integrate spectral shape and amplitude features \nwell. Fusing SAF is superior to other similarity measures that integrate SAF, such as spectral similarity scale, spectral \npan-similarity measure, and normalized spectral similarity score(NS3 \n).
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.25103/jestr.085.22
- https://doi.org/10.25103/jestr.085.22
- OA Status
- diamond
- Cited By
- 15
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2561754869
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2561754869Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.25103/jestr.085.22Digital Object Identifier
- Title
-
A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude FeaturesWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2015Year of publication
- Publication date
-
2015-10-01Full publication date if available
- Authors
-
Jianli Ding, Xuejian Li, Linpeng HuangList of authors in order
- Landing page
-
https://doi.org/10.25103/jestr.085.22Publisher landing page
- PDF URL
-
https://doi.org/10.25103/jestr.085.22Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.25103/jestr.085.22Direct OA link when available
- Concepts
-
Similarity (geometry), Similarity measure, Measure (data warehouse), Pattern recognition (psychology), Amplitude, Spectral shape analysis, Euclidean distance, Mathematics, Feature (linguistics), Artificial intelligence, Divergence (linguistics), Basis (linear algebra), Feature vector, Feature extraction, Computer science, Spectral line, Data mining, Geometry, Physics, Optics, Linguistics, Philosophy, Image (mathematics), AstronomyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2023: 1, 2021: 4, 2020: 4, 2019: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2561754869 |
|---|---|
| doi | https://doi.org/10.25103/jestr.085.22 |
| ids.doi | https://doi.org/10.25103/jestr.085.22 |
| ids.mag | 2561754869 |
| ids.openalex | https://openalex.org/W2561754869 |
| fwci | 0.62860183 |
| type | article |
| title | A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude Features |
| biblio.issue | 5 |
| biblio.volume | 8 |
| biblio.last_page | 179 |
| biblio.first_page | 172 |
| topics[0].id | https://openalex.org/T12157 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Geochemistry and Geologic Mapping |
| topics[1].id | https://openalex.org/T10689 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9976000189781189 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2214 |
| topics[1].subfield.display_name | Media Technology |
| topics[1].display_name | Remote-Sensing Image Classification |
| topics[2].id | https://openalex.org/T10770 |
| topics[2].field.id | https://openalex.org/fields/23 |
| topics[2].field.display_name | Environmental Science |
| topics[2].score | 0.979200005531311 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2305 |
| topics[2].subfield.display_name | Environmental Engineering |
| topics[2].display_name | Soil Geostatistics and Mapping |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103278499 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7590438723564148 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[0].display_name | Similarity (geometry) |
| concepts[1].id | https://openalex.org/C2776517306 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7470222115516663 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q29017317 |
| concepts[1].display_name | Similarity measure |
| concepts[2].id | https://openalex.org/C2780009758 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6797016859054565 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q6804172 |
| concepts[2].display_name | Measure (data warehouse) |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6525802612304688 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C180205008 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6216970086097717 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q159190 |
| concepts[4].display_name | Amplitude |
| concepts[5].id | https://openalex.org/C152822103 |
| concepts[5].level | 3 |
| concepts[5].score | 0.6207808256149292 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7575207 |
| concepts[5].display_name | Spectral shape analysis |
| concepts[6].id | https://openalex.org/C120174047 |
| concepts[6].level | 2 |
| concepts[6].score | 0.6074530482292175 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q847073 |
| concepts[6].display_name | Euclidean distance |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5926467776298523 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C2776401178 |
| concepts[8].level | 2 |
| concepts[8].score | 0.588445782661438 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q12050496 |
| concepts[8].display_name | Feature (linguistics) |
| concepts[9].id | https://openalex.org/C154945302 |
| concepts[9].level | 1 |
| concepts[9].score | 0.5646879076957703 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[9].display_name | Artificial intelligence |
| concepts[10].id | https://openalex.org/C207390915 |
| concepts[10].level | 2 |
| concepts[10].score | 0.514956533908844 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q1230525 |
| concepts[10].display_name | Divergence (linguistics) |
| concepts[11].id | https://openalex.org/C12426560 |
| concepts[11].level | 2 |
| concepts[11].score | 0.4589674472808838 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q189569 |
| concepts[11].display_name | Basis (linear algebra) |
| concepts[12].id | https://openalex.org/C83665646 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4547441005706787 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q42139305 |
| concepts[12].display_name | Feature vector |
| concepts[13].id | https://openalex.org/C52622490 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4178638458251953 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q1026626 |
| concepts[13].display_name | Feature extraction |
| concepts[14].id | https://openalex.org/C41008148 |
| concepts[14].level | 0 |
| concepts[14].score | 0.34105443954467773 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[14].display_name | Computer science |
| concepts[15].id | https://openalex.org/C4839761 |
| concepts[15].level | 2 |
| concepts[15].score | 0.20652467012405396 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q212111 |
| concepts[15].display_name | Spectral line |
| concepts[16].id | https://openalex.org/C124101348 |
| concepts[16].level | 1 |
| concepts[16].score | 0.1996178925037384 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[16].display_name | Data mining |
| concepts[17].id | https://openalex.org/C2524010 |
| concepts[17].level | 1 |
| concepts[17].score | 0.13174551725387573 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[17].display_name | Geometry |
| concepts[18].id | https://openalex.org/C121332964 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1145206093788147 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q413 |
| concepts[18].display_name | Physics |
| concepts[19].id | https://openalex.org/C120665830 |
| concepts[19].level | 1 |
| concepts[19].score | 0.08729729056358337 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q14620 |
| concepts[19].display_name | Optics |
| concepts[20].id | https://openalex.org/C41895202 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[20].display_name | Linguistics |
| concepts[21].id | https://openalex.org/C138885662 |
| concepts[21].level | 0 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[21].display_name | Philosophy |
| concepts[22].id | https://openalex.org/C115961682 |
| concepts[22].level | 2 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[22].display_name | Image (mathematics) |
| concepts[23].id | https://openalex.org/C1276947 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q333 |
| concepts[23].display_name | Astronomy |
| keywords[0].id | https://openalex.org/keywords/similarity |
| keywords[0].score | 0.7590438723564148 |
| keywords[0].display_name | Similarity (geometry) |
| keywords[1].id | https://openalex.org/keywords/similarity-measure |
| keywords[1].score | 0.7470222115516663 |
| keywords[1].display_name | Similarity measure |
| keywords[2].id | https://openalex.org/keywords/measure |
| keywords[2].score | 0.6797016859054565 |
| keywords[2].display_name | Measure (data warehouse) |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6525802612304688 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/amplitude |
| keywords[4].score | 0.6216970086097717 |
| keywords[4].display_name | Amplitude |
| keywords[5].id | https://openalex.org/keywords/spectral-shape-analysis |
| keywords[5].score | 0.6207808256149292 |
| keywords[5].display_name | Spectral shape analysis |
| keywords[6].id | https://openalex.org/keywords/euclidean-distance |
| keywords[6].score | 0.6074530482292175 |
| keywords[6].display_name | Euclidean distance |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.5926467776298523 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/feature |
| keywords[8].score | 0.588445782661438 |
| keywords[8].display_name | Feature (linguistics) |
| keywords[9].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[9].score | 0.5646879076957703 |
| keywords[9].display_name | Artificial intelligence |
| keywords[10].id | https://openalex.org/keywords/divergence |
| keywords[10].score | 0.514956533908844 |
| keywords[10].display_name | Divergence (linguistics) |
| keywords[11].id | https://openalex.org/keywords/basis |
| keywords[11].score | 0.4589674472808838 |
| keywords[11].display_name | Basis (linear algebra) |
| keywords[12].id | https://openalex.org/keywords/feature-vector |
| keywords[12].score | 0.4547441005706787 |
| keywords[12].display_name | Feature vector |
| keywords[13].id | https://openalex.org/keywords/feature-extraction |
| keywords[13].score | 0.4178638458251953 |
| keywords[13].display_name | Feature extraction |
| keywords[14].id | https://openalex.org/keywords/computer-science |
| keywords[14].score | 0.34105443954467773 |
| keywords[14].display_name | Computer science |
| keywords[15].id | https://openalex.org/keywords/spectral-line |
| keywords[15].score | 0.20652467012405396 |
| keywords[15].display_name | Spectral line |
| keywords[16].id | https://openalex.org/keywords/data-mining |
| keywords[16].score | 0.1996178925037384 |
| keywords[16].display_name | Data mining |
| keywords[17].id | https://openalex.org/keywords/geometry |
| keywords[17].score | 0.13174551725387573 |
| keywords[17].display_name | Geometry |
| keywords[18].id | https://openalex.org/keywords/physics |
| keywords[18].score | 0.1145206093788147 |
| keywords[18].display_name | Physics |
| keywords[19].id | https://openalex.org/keywords/optics |
| keywords[19].score | 0.08729729056358337 |
| keywords[19].display_name | Optics |
| language | en |
| locations[0].id | doi:10.25103/jestr.085.22 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2736934119 |
| locations[0].source.issn | 1791-2377, 1791-9320 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1791-2377 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Engineering Science and Technology Review |
| locations[0].source.host_organization | https://openalex.org/P4310318052 |
| locations[0].source.host_organization_name | Eastern Macedonia and Thrace Institute of Technology |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310318052 |
| locations[0].source.host_organization_lineage_names | Eastern Macedonia and Thrace Institute of Technology |
| locations[0].license | |
| locations[0].pdf_url | https://doi.org/10.25103/jestr.085.22 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Engineering Science and Technology Review |
| locations[0].landing_page_url | https://doi.org/10.25103/jestr.085.22 |
| locations[1].id | pmh:oai:doaj.org/article:ffe6837630ff43fea32297b9edea0062 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Journal of Engineering Science and Technology Review, Vol 8, Iss 5, Pp 172-179 (2015) |
| locations[1].landing_page_url | https://doaj.org/article/ffe6837630ff43fea32297b9edea0062 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5103077037 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-9626-7660 |
| authorships[0].author.display_name | Jianli Ding |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].raw_affiliation_string | Changsha Engineering & Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410011, China |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I139660479 |
| authorships[0].affiliations[1].raw_affiliation_string | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[0].institutions[0].id | https://openalex.org/I139660479 |
| authorships[0].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Central South University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | J. G. Ding |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Changsha Engineering & Research Institute Ltd. of Nonferrous Metallurgy, Changsha, 410011, China, School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[1].author.id | https://openalex.org/A5060255447 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-7553-2576 |
| authorships[1].author.display_name | Xuejian Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I139660479 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[1].institutions[0].id | https://openalex.org/I139660479 |
| authorships[1].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Central South University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | X. B. Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Resources and Safety Engineering, Central South University, Changsha 410083, China |
| authorships[2].author.id | https://openalex.org/A5059624019 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-1531-7962 |
| authorships[2].author.display_name | Linpeng Huang |
| authorships[2].countries | AU |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I205640436 |
| authorships[2].affiliations[0].raw_affiliation_string | Curtin University, Perth 6102, Australia |
| authorships[2].institutions[0].id | https://openalex.org/I205640436 |
| authorships[2].institutions[0].ror | https://ror.org/02n415q13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I205640436 |
| authorships[2].institutions[0].country_code | AU |
| authorships[2].institutions[0].display_name | Curtin University |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | L. Q. Huang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Curtin University, Perth 6102, Australia |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.25103/jestr.085.22 |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2017-01-06T00:00:00 |
| display_name | A Novel Method for Spectral Similarity Measure by Fusing Shape and Amplitude Features |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12157 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Geochemistry and Geologic Mapping |
| related_works | https://openalex.org/W1990140521, https://openalex.org/W3111740253, https://openalex.org/W2902282441, https://openalex.org/W2907196492, https://openalex.org/W1970141873, https://openalex.org/W2157579282, https://openalex.org/W1982925424, https://openalex.org/W2811335600, https://openalex.org/W4231537015, https://openalex.org/W2601128660 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2023 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2021 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2020 |
| counts_by_year[3].cited_by_count | 4 |
| counts_by_year[4].year | 2019 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2017 |
| counts_by_year[5].cited_by_count | 1 |
| counts_by_year[6].year | 2016 |
| counts_by_year[6].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.25103/jestr.085.22 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2736934119 |
| best_oa_location.source.issn | 1791-2377, 1791-9320 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1791-2377 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Journal of Engineering Science and Technology Review |
| best_oa_location.source.host_organization | https://openalex.org/P4310318052 |
| best_oa_location.source.host_organization_name | Eastern Macedonia and Thrace Institute of Technology |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310318052 |
| best_oa_location.source.host_organization_lineage_names | Eastern Macedonia and Thrace Institute of Technology |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://doi.org/10.25103/jestr.085.22 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Journal of Engineering Science and Technology Review |
| best_oa_location.landing_page_url | https://doi.org/10.25103/jestr.085.22 |
| primary_location.id | doi:10.25103/jestr.085.22 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2736934119 |
| primary_location.source.issn | 1791-2377, 1791-9320 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1791-2377 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Engineering Science and Technology Review |
| primary_location.source.host_organization | https://openalex.org/P4310318052 |
| primary_location.source.host_organization_name | Eastern Macedonia and Thrace Institute of Technology |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310318052 |
| primary_location.source.host_organization_lineage_names | Eastern Macedonia and Thrace Institute of Technology |
| primary_location.license | |
| primary_location.pdf_url | https://doi.org/10.25103/jestr.085.22 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Engineering Science and Technology Review |
| primary_location.landing_page_url | https://doi.org/10.25103/jestr.085.22 |
| publication_date | 2015-10-01 |
| publication_year | 2015 |
| referenced_works | https://openalex.org/W2010319424, https://openalex.org/W2009539575, https://openalex.org/W2065991620, https://openalex.org/W1970475948, https://openalex.org/W2000285770, https://openalex.org/W2046346658, https://openalex.org/W2371402057, https://openalex.org/W1994784561, https://openalex.org/W2124480063, https://openalex.org/W1965548396, https://openalex.org/W1532610010, https://openalex.org/W2885085815, https://openalex.org/W2009951413, https://openalex.org/W2094304765, https://openalex.org/W1656974909, https://openalex.org/W2606306511, https://openalex.org/W2123800205, https://openalex.org/W2363008083, https://openalex.org/W2375063065, https://openalex.org/W3103590434 |
| referenced_works_count | 20 |
| abstract_inverted_index.To | 21 |
| abstract_inverted_index.as | 154 |
| abstract_inverted_index.by | 55, 90, 97, 110 |
| abstract_inverted_index.is | 3, 15, 144 |
| abstract_inverted_index.of | 6, 12, 34, 65, 81, 128 |
| abstract_inverted_index.on | 100, 106 |
| abstract_inverted_index.to | 146 |
| abstract_inverted_index.SAF | 67, 114, 120, 143 |
| abstract_inverted_index.The | 10 |
| abstract_inverted_index.and | 26, 36, 46, 58, 62, 71, 103, 130, 139, 160 |
| abstract_inverted_index.the | 4, 16, 23, 41, 51, 79, 93, 116, 122 |
| abstract_inverted_index.SAF, | 112, 152 |
| abstract_inverted_index.such | 153 |
| abstract_inverted_index.that | 150 |
| abstract_inverted_index.this | 30 |
| abstract_inverted_index.were | 77 |
| abstract_inverted_index.with | 68 |
| abstract_inverted_index.based | 99, 105 |
| abstract_inverted_index.basis | 5, 80 |
| abstract_inverted_index.inner | 126 |
| abstract_inverted_index.other | 147 |
| abstract_inverted_index.paper | 31 |
| abstract_inverted_index.shape | 25, 35, 42, 57, 101, 129, 138 |
| abstract_inverted_index.shows | 115 |
| abstract_inverted_index.which | 135 |
| abstract_inverted_index.(SAF), | 61 |
| abstract_inverted_index.(USGS) | 86 |
| abstract_inverted_index.Fusing | 119, 142 |
| abstract_inverted_index.States | 83 |
| abstract_inverted_index.Survey | 85 |
| abstract_inverted_index.United | 82 |
| abstract_inverted_index.fusing | 56, 66, 113 |
| abstract_inverted_index.scale, | 157 |
| abstract_inverted_index.vector | 45 |
| abstract_inverted_index.express | 22 |
| abstract_inverted_index.feature | 38, 43, 132 |
| abstract_inverted_index.highest | 94, 117 |
| abstract_inverted_index.measure | 2, 54 |
| abstract_inverted_index.product | 127 |
| abstract_inverted_index.results | 124 |
| abstract_inverted_index.vector, | 39, 49 |
| abstract_inverted_index.Spectral | 0 |
| abstract_inverted_index.distance | 44, 70, 133 |
| abstract_inverted_index.features | 14, 28, 60, 102 |
| abstract_inverted_index.followed | 96 |
| abstract_inverted_index.measure, | 159 |
| abstract_inverted_index.measure. | 20 |
| abstract_inverted_index.measured | 123 |
| abstract_inverted_index.measures | 76, 89, 98, 104, 109, 149 |
| abstract_inverted_index.presents | 32 |
| abstract_inverted_index.proposes | 50 |
| abstract_inverted_index.spectral | 7, 13, 18, 24, 52, 72, 137, 155, 162 |
| abstract_inverted_index.superior | 145 |
| abstract_inverted_index.vectors, | 134 |
| abstract_inverted_index.Different | 75 |
| abstract_inverted_index.Euclidean | 69 |
| abstract_inverted_index.accuracy, | 95 |
| abstract_inverted_index.accuracy. | 118 |
| abstract_inverted_index.amplitude | 27, 37, 47, 59, 107, 131, 140 |
| abstract_inverted_index.discloses | 63 |
| abstract_inverted_index.expresses | 121 |
| abstract_inverted_index.integrate | 136, 151 |
| abstract_inverted_index.Generally, | 88 |
| abstract_inverted_index.Geological | 84 |
| abstract_inverted_index.constructs | 40 |
| abstract_inverted_index.normalized | 161 |
| abstract_inverted_index.similarity | 1, 19, 53, 148, 156, 163 |
| abstract_inverted_index.description | 11 |
| abstract_inverted_index.divergence. | 74 |
| abstract_inverted_index.extraction. | 9 |
| abstract_inverted_index.information | 8, 73 |
| abstract_inverted_index.integrating | 91, 111 |
| abstract_inverted_index.reasonably, | 29 |
| abstract_inverted_index.key \nto | 17 |
| abstract_inverted_index.with \nthe | 125 |
| abstract_inverted_index.tested \non | 78 |
| abstract_inverted_index.SAF \nachieve | 92 |
| abstract_inverted_index.features. \nIn | 108 |
| abstract_inverted_index.score(NS3 \n). | 164 |
| abstract_inverted_index.features \nwell. | 141 |
| abstract_inverted_index.mineral_beckman_430. | 87 |
| abstract_inverted_index.the \ndefinition | 33 |
| abstract_inverted_index.feature \ndistance | 48 |
| abstract_inverted_index.the \nrelationship | 64 |
| abstract_inverted_index.spectral \npan-similarity | 158 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 89 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.86506749 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |