A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.1371/journal.pone.0239591
Traditional methods to measure spatio-temporal variations in biomass rely on a labor-intensive destructive sampling of the crop. In this paper, we present a high-throughput phenotyping approach for the estimation of Above-Ground Biomass Dynamics (AGBD) using an unmanned aerial system. Multispectral imagery was acquired and processed by using the proposed segmentation method called GFKuts, that optimally labels the plot canopy based on a Gaussian mixture model, a Montecarlo based K-means, and a guided image filtering. Accurate plot segmentation results enabled the extraction of several canopy features associated with biomass yield. Machine learning algorithms were trained to estimate the AGBD according to the growth stages of the crop and the physiological response of two rice genotypes under lowland and upland production systems. Results report AGBD estimation correlations with an average of r = 0.95 and R2 = 0.91 according to the experimental data. We compared our segmentation method against a traditional technique based on clustering. A comprehensive improvement of 13% in the biomass correlation was obtained thanks to the segmentation method proposed herein.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1371/journal.pone.0239591
- https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printable
- OA Status
- gold
- Cited By
- 21
- References
- 42
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3091730256
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3091730256Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1371/journal.pone.0239591Digital Object Identifier
- Title
-
A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice cropsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-10-05Full publication date if available
- Authors
-
Julian D. Colorado, Francisco Calderón, Diego Méndez, E. Petró, Juan P. Rojas, Edgar S. Correa, Iván F. Mondragón, Maria Camila Rebolledo, Andrés Jaramillo-BoteroList of authors in order
- Landing page
-
https://doi.org/10.1371/journal.pone.0239591Publisher landing page
- PDF URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printableDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printableDirect OA link when available
- Concepts
-
Multispectral image, Segmentation, Biomass (ecology), Canopy, Artificial intelligence, Cluster analysis, Image segmentation, Computer science, Sampling (signal processing), Pattern recognition (psychology), Pixel, Remote sensing, Environmental science, Mathematics, Agronomy, Computer vision, Ecology, Biology, Geography, Filter (signal processing)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 5, 2024: 2, 2023: 4, 2022: 6, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
42Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3091730256 |
|---|---|
| doi | https://doi.org/10.1371/journal.pone.0239591 |
| ids.doi | https://doi.org/10.1371/journal.pone.0239591 |
| ids.mag | 3091730256 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/33017406 |
| ids.openalex | https://openalex.org/W3091730256 |
| fwci | 2.06642669 |
| mesh[0].qualifier_ui | |
| mesh[0].descriptor_ui | D000465 |
| mesh[0].is_major_topic | False |
| mesh[0].qualifier_name | |
| mesh[0].descriptor_name | Algorithms |
| mesh[1].qualifier_ui | |
| mesh[1].descriptor_ui | D018533 |
| mesh[1].is_major_topic | False |
| mesh[1].qualifier_name | |
| mesh[1].descriptor_name | Biomass |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D003105 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Colombia |
| mesh[3].qualifier_ui | Q000254 |
| mesh[3].descriptor_ui | D018556 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | growth & development |
| mesh[3].descriptor_name | Crops, Agricultural |
| mesh[4].qualifier_ui | Q000295 |
| mesh[4].descriptor_ui | D040362 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | instrumentation |
| mesh[4].descriptor_name | Geographic Information Systems |
| mesh[5].qualifier_ui | Q000706 |
| mesh[5].descriptor_ui | D040362 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | statistics & numerical data |
| mesh[5].descriptor_name | Geographic Information Systems |
| mesh[6].qualifier_ui | Q000379 |
| mesh[6].descriptor_ui | D007091 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | methods |
| mesh[6].descriptor_name | Image Processing, Computer-Assisted |
| mesh[7].qualifier_ui | Q000706 |
| mesh[7].descriptor_ui | D007091 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | statistics & numerical data |
| mesh[7].descriptor_name | Image Processing, Computer-Assisted |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D007259 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Infrared Rays |
| mesh[9].qualifier_ui | |
| mesh[9].descriptor_ui | D000069550 |
| mesh[9].is_major_topic | False |
| mesh[9].qualifier_name | |
| mesh[9].descriptor_name | Machine Learning |
| mesh[10].qualifier_ui | Q000254 |
| mesh[10].descriptor_ui | D012275 |
| mesh[10].is_major_topic | False |
| mesh[10].qualifier_name | growth & development |
| mesh[10].descriptor_name | Oryza |
| mesh[11].qualifier_ui | Q000295 |
| mesh[11].descriptor_ui | D058998 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | instrumentation |
| mesh[11].descriptor_name | Remote Sensing Technology |
| mesh[12].qualifier_ui | Q000379 |
| mesh[12].descriptor_ui | D058998 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | methods |
| mesh[12].descriptor_name | Remote Sensing Technology |
| mesh[13].qualifier_ui | Q000706 |
| mesh[13].descriptor_ui | D058998 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | statistics & numerical data |
| mesh[13].descriptor_name | Remote Sensing Technology |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D062211 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Spatio-Temporal Analysis |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D000465 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Algorithms |
| mesh[16].qualifier_ui | |
| mesh[16].descriptor_ui | D018533 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | |
| mesh[16].descriptor_name | Biomass |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D003105 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Colombia |
| mesh[18].qualifier_ui | Q000254 |
| mesh[18].descriptor_ui | D018556 |
| mesh[18].is_major_topic | False |
| mesh[18].qualifier_name | growth & development |
| mesh[18].descriptor_name | Crops, Agricultural |
| mesh[19].qualifier_ui | Q000295 |
| mesh[19].descriptor_ui | D040362 |
| mesh[19].is_major_topic | False |
| mesh[19].qualifier_name | instrumentation |
| mesh[19].descriptor_name | Geographic Information Systems |
| mesh[20].qualifier_ui | Q000706 |
| mesh[20].descriptor_ui | D040362 |
| mesh[20].is_major_topic | False |
| mesh[20].qualifier_name | statistics & numerical data |
| mesh[20].descriptor_name | Geographic Information Systems |
| mesh[21].qualifier_ui | Q000379 |
| mesh[21].descriptor_ui | D007091 |
| mesh[21].is_major_topic | False |
| mesh[21].qualifier_name | methods |
| mesh[21].descriptor_name | Image Processing, Computer-Assisted |
| mesh[22].qualifier_ui | Q000706 |
| mesh[22].descriptor_ui | D007091 |
| mesh[22].is_major_topic | False |
| mesh[22].qualifier_name | statistics & numerical data |
| mesh[22].descriptor_name | Image Processing, Computer-Assisted |
| mesh[23].qualifier_ui | |
| mesh[23].descriptor_ui | D007259 |
| mesh[23].is_major_topic | False |
| mesh[23].qualifier_name | |
| mesh[23].descriptor_name | Infrared Rays |
| mesh[24].qualifier_ui | |
| mesh[24].descriptor_ui | D000069550 |
| mesh[24].is_major_topic | False |
| mesh[24].qualifier_name | |
| mesh[24].descriptor_name | Machine Learning |
| mesh[25].qualifier_ui | Q000254 |
| mesh[25].descriptor_ui | D012275 |
| mesh[25].is_major_topic | False |
| mesh[25].qualifier_name | growth & development |
| mesh[25].descriptor_name | Oryza |
| mesh[26].qualifier_ui | Q000295 |
| mesh[26].descriptor_ui | D058998 |
| mesh[26].is_major_topic | False |
| mesh[26].qualifier_name | instrumentation |
| mesh[26].descriptor_name | Remote Sensing Technology |
| mesh[27].qualifier_ui | Q000379 |
| mesh[27].descriptor_ui | D058998 |
| mesh[27].is_major_topic | False |
| mesh[27].qualifier_name | methods |
| mesh[27].descriptor_name | Remote Sensing Technology |
| mesh[28].qualifier_ui | Q000706 |
| mesh[28].descriptor_ui | D058998 |
| mesh[28].is_major_topic | False |
| mesh[28].qualifier_name | statistics & numerical data |
| mesh[28].descriptor_name | Remote Sensing Technology |
| mesh[29].qualifier_ui | |
| mesh[29].descriptor_ui | D062211 |
| mesh[29].is_major_topic | False |
| mesh[29].qualifier_name | |
| mesh[29].descriptor_name | Spatio-Temporal Analysis |
| mesh[30].qualifier_ui | |
| mesh[30].descriptor_ui | D000465 |
| mesh[30].is_major_topic | False |
| mesh[30].qualifier_name | |
| mesh[30].descriptor_name | Algorithms |
| mesh[31].qualifier_ui | |
| mesh[31].descriptor_ui | D018533 |
| mesh[31].is_major_topic | False |
| mesh[31].qualifier_name | |
| mesh[31].descriptor_name | Biomass |
| mesh[32].qualifier_ui | |
| mesh[32].descriptor_ui | D003105 |
| mesh[32].is_major_topic | False |
| mesh[32].qualifier_name | |
| mesh[32].descriptor_name | Colombia |
| mesh[33].qualifier_ui | Q000254 |
| mesh[33].descriptor_ui | D018556 |
| mesh[33].is_major_topic | False |
| mesh[33].qualifier_name | growth & development |
| mesh[33].descriptor_name | Crops, Agricultural |
| mesh[34].qualifier_ui | Q000295 |
| mesh[34].descriptor_ui | D040362 |
| mesh[34].is_major_topic | False |
| mesh[34].qualifier_name | instrumentation |
| mesh[34].descriptor_name | Geographic Information Systems |
| mesh[35].qualifier_ui | Q000706 |
| mesh[35].descriptor_ui | D040362 |
| mesh[35].is_major_topic | False |
| mesh[35].qualifier_name | statistics & numerical data |
| mesh[35].descriptor_name | Geographic Information Systems |
| mesh[36].qualifier_ui | Q000379 |
| mesh[36].descriptor_ui | D007091 |
| mesh[36].is_major_topic | False |
| mesh[36].qualifier_name | methods |
| mesh[36].descriptor_name | Image Processing, Computer-Assisted |
| mesh[37].qualifier_ui | Q000706 |
| mesh[37].descriptor_ui | D007091 |
| mesh[37].is_major_topic | False |
| mesh[37].qualifier_name | statistics & numerical data |
| mesh[37].descriptor_name | Image Processing, Computer-Assisted |
| mesh[38].qualifier_ui | |
| mesh[38].descriptor_ui | D007259 |
| mesh[38].is_major_topic | False |
| mesh[38].qualifier_name | |
| mesh[38].descriptor_name | Infrared Rays |
| mesh[39].qualifier_ui | |
| mesh[39].descriptor_ui | D000069550 |
| mesh[39].is_major_topic | False |
| mesh[39].qualifier_name | |
| mesh[39].descriptor_name | Machine Learning |
| mesh[40].qualifier_ui | Q000254 |
| mesh[40].descriptor_ui | D012275 |
| mesh[40].is_major_topic | False |
| mesh[40].qualifier_name | growth & development |
| mesh[40].descriptor_name | Oryza |
| mesh[41].qualifier_ui | Q000295 |
| mesh[41].descriptor_ui | D058998 |
| mesh[41].is_major_topic | False |
| mesh[41].qualifier_name | instrumentation |
| mesh[41].descriptor_name | Remote Sensing Technology |
| mesh[42].qualifier_ui | Q000379 |
| mesh[42].descriptor_ui | D058998 |
| mesh[42].is_major_topic | False |
| mesh[42].qualifier_name | methods |
| mesh[42].descriptor_name | Remote Sensing Technology |
| mesh[43].qualifier_ui | Q000706 |
| mesh[43].descriptor_ui | D058998 |
| mesh[43].is_major_topic | False |
| mesh[43].qualifier_name | statistics & numerical data |
| mesh[43].descriptor_name | Remote Sensing Technology |
| mesh[44].qualifier_ui | |
| mesh[44].descriptor_ui | D062211 |
| mesh[44].is_major_topic | False |
| mesh[44].qualifier_name | |
| mesh[44].descriptor_name | Spatio-Temporal Analysis |
| type | article |
| title | A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops |
| biblio.issue | 10 |
| biblio.volume | 15 |
| biblio.last_page | e0239591 |
| biblio.first_page | e0239591 |
| topics[0].id | https://openalex.org/T10111 |
| topics[0].field.id | https://openalex.org/fields/23 |
| topics[0].field.display_name | Environmental Science |
| topics[0].score | 0.9970999956130981 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2303 |
| topics[0].subfield.display_name | Ecology |
| topics[0].display_name | Remote Sensing in Agriculture |
| topics[1].id | https://openalex.org/T11164 |
| topics[1].field.id | https://openalex.org/fields/23 |
| topics[1].field.display_name | Environmental Science |
| topics[1].score | 0.9968000054359436 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2305 |
| topics[1].subfield.display_name | Environmental Engineering |
| topics[1].display_name | Remote Sensing and LiDAR Applications |
| topics[2].id | https://openalex.org/T10616 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9729999899864197 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Smart Agriculture and AI |
| is_xpac | False |
| apc_list.value | 1805 |
| apc_list.currency | USD |
| apc_list.value_usd | 1805 |
| apc_paid.value | 1805 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1805 |
| concepts[0].id | https://openalex.org/C173163844 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6983298659324646 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1761440 |
| concepts[0].display_name | Multispectral image |
| concepts[1].id | https://openalex.org/C89600930 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6316080689430237 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[1].display_name | Segmentation |
| concepts[2].id | https://openalex.org/C115540264 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5824089050292969 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2945560 |
| concepts[2].display_name | Biomass (ecology) |
| concepts[3].id | https://openalex.org/C101000010 |
| concepts[3].level | 2 |
| concepts[3].score | 0.549346923828125 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q5033434 |
| concepts[3].display_name | Canopy |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5284528732299805 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C73555534 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5114161372184753 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[5].display_name | Cluster analysis |
| concepts[6].id | https://openalex.org/C124504099 |
| concepts[6].level | 3 |
| concepts[6].score | 0.5070967674255371 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q56933 |
| concepts[6].display_name | Image segmentation |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.5009992122650146 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C140779682 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4766833782196045 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[8].display_name | Sampling (signal processing) |
| concepts[9].id | https://openalex.org/C153180895 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4462873339653015 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[9].display_name | Pattern recognition (psychology) |
| concepts[10].id | https://openalex.org/C160633673 |
| concepts[10].level | 2 |
| concepts[10].score | 0.43557536602020264 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q355198 |
| concepts[10].display_name | Pixel |
| concepts[11].id | https://openalex.org/C62649853 |
| concepts[11].level | 1 |
| concepts[11].score | 0.41644200682640076 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q199687 |
| concepts[11].display_name | Remote sensing |
| concepts[12].id | https://openalex.org/C39432304 |
| concepts[12].level | 0 |
| concepts[12].score | 0.4055342674255371 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q188847 |
| concepts[12].display_name | Environmental science |
| concepts[13].id | https://openalex.org/C33923547 |
| concepts[13].level | 0 |
| concepts[13].score | 0.3391512334346771 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[13].display_name | Mathematics |
| concepts[14].id | https://openalex.org/C6557445 |
| concepts[14].level | 1 |
| concepts[14].score | 0.3120267987251282 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[14].display_name | Agronomy |
| concepts[15].id | https://openalex.org/C31972630 |
| concepts[15].level | 1 |
| concepts[15].score | 0.21054068207740784 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[15].display_name | Computer vision |
| concepts[16].id | https://openalex.org/C18903297 |
| concepts[16].level | 1 |
| concepts[16].score | 0.11539566516876221 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7150 |
| concepts[16].display_name | Ecology |
| concepts[17].id | https://openalex.org/C86803240 |
| concepts[17].level | 0 |
| concepts[17].score | 0.11309817433357239 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[17].display_name | Biology |
| concepts[18].id | https://openalex.org/C205649164 |
| concepts[18].level | 0 |
| concepts[18].score | 0.09992775321006775 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[18].display_name | Geography |
| concepts[19].id | https://openalex.org/C106131492 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[19].display_name | Filter (signal processing) |
| keywords[0].id | https://openalex.org/keywords/multispectral-image |
| keywords[0].score | 0.6983298659324646 |
| keywords[0].display_name | Multispectral image |
| keywords[1].id | https://openalex.org/keywords/segmentation |
| keywords[1].score | 0.6316080689430237 |
| keywords[1].display_name | Segmentation |
| keywords[2].id | https://openalex.org/keywords/biomass |
| keywords[2].score | 0.5824089050292969 |
| keywords[2].display_name | Biomass (ecology) |
| keywords[3].id | https://openalex.org/keywords/canopy |
| keywords[3].score | 0.549346923828125 |
| keywords[3].display_name | Canopy |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.5284528732299805 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/cluster-analysis |
| keywords[5].score | 0.5114161372184753 |
| keywords[5].display_name | Cluster analysis |
| keywords[6].id | https://openalex.org/keywords/image-segmentation |
| keywords[6].score | 0.5070967674255371 |
| keywords[6].display_name | Image segmentation |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.5009992122650146 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/sampling |
| keywords[8].score | 0.4766833782196045 |
| keywords[8].display_name | Sampling (signal processing) |
| keywords[9].id | https://openalex.org/keywords/pattern-recognition |
| keywords[9].score | 0.4462873339653015 |
| keywords[9].display_name | Pattern recognition (psychology) |
| keywords[10].id | https://openalex.org/keywords/pixel |
| keywords[10].score | 0.43557536602020264 |
| keywords[10].display_name | Pixel |
| keywords[11].id | https://openalex.org/keywords/remote-sensing |
| keywords[11].score | 0.41644200682640076 |
| keywords[11].display_name | Remote sensing |
| keywords[12].id | https://openalex.org/keywords/environmental-science |
| keywords[12].score | 0.4055342674255371 |
| keywords[12].display_name | Environmental science |
| keywords[13].id | https://openalex.org/keywords/mathematics |
| keywords[13].score | 0.3391512334346771 |
| keywords[13].display_name | Mathematics |
| keywords[14].id | https://openalex.org/keywords/agronomy |
| keywords[14].score | 0.3120267987251282 |
| keywords[14].display_name | Agronomy |
| keywords[15].id | https://openalex.org/keywords/computer-vision |
| keywords[15].score | 0.21054068207740784 |
| keywords[15].display_name | Computer vision |
| keywords[16].id | https://openalex.org/keywords/ecology |
| keywords[16].score | 0.11539566516876221 |
| keywords[16].display_name | Ecology |
| keywords[17].id | https://openalex.org/keywords/biology |
| keywords[17].score | 0.11309817433357239 |
| keywords[17].display_name | Biology |
| keywords[18].id | https://openalex.org/keywords/geography |
| keywords[18].score | 0.09992775321006775 |
| keywords[18].display_name | Geography |
| language | en |
| locations[0].id | doi:10.1371/journal.pone.0239591 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S202381698 |
| locations[0].source.issn | 1932-6203 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1932-6203 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | PLoS ONE |
| locations[0].source.host_organization | https://openalex.org/P4310315706 |
| locations[0].source.host_organization_name | Public Library of Science |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310315706 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printable |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | PLOS ONE |
| locations[0].landing_page_url | https://doi.org/10.1371/journal.pone.0239591 |
| locations[1].id | pmid:33017406 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | PloS one |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/33017406 |
| locations[2].id | pmh:oai:doaj.org/article:22c558fdd7e840deb3dc61c2e88c1200 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].source.host_organization_lineage | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | PLoS ONE, Vol 15, Iss 10, p e0239591 (2020) |
| locations[2].landing_page_url | https://doaj.org/article/22c558fdd7e840deb3dc61c2e88c1200 |
| locations[3].id | pmh:oai:agritrop.cirad.fr:599590 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306402311 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Agritrop (Cirad) |
| locations[3].source.host_organization | https://openalex.org/I131077856 |
| locations[3].source.host_organization_name | Centre de Coopération Internationale en Recherche Agronomique pour le Développement |
| locations[3].source.host_organization_lineage | https://openalex.org/I131077856 |
| locations[3].license | cc-by |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | article |
| locations[3].license_id | https://openalex.org/licenses/cc-by |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | PloS One |
| locations[3].landing_page_url | http://agritrop.cirad.fr/599590/ |
| locations[4].id | pmh:oai:pubmedcentral.nih.gov:7535130 |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S2764455111 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | False |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | PubMed Central |
| locations[4].source.host_organization | https://openalex.org/I1299303238 |
| locations[4].source.host_organization_name | National Institutes of Health |
| locations[4].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | PLoS One |
| locations[4].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/7535130 |
| locations[5].id | pmh:oai:HAL:hal-03436148v1 |
| locations[5].is_oa | True |
| locations[5].source.id | https://openalex.org/S4306402512 |
| locations[5].source.issn | |
| locations[5].source.type | repository |
| locations[5].source.is_oa | False |
| locations[5].source.issn_l | |
| locations[5].source.is_core | False |
| locations[5].source.is_in_doaj | False |
| locations[5].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[5].source.host_organization | https://openalex.org/I1294671590 |
| locations[5].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[5].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[5].license | cc-by |
| locations[5].pdf_url | |
| locations[5].version | submittedVersion |
| locations[5].raw_type | Journal articles |
| locations[5].license_id | https://openalex.org/licenses/cc-by |
| locations[5].is_accepted | False |
| locations[5].is_published | False |
| locations[5].raw_source_name | PLoS ONE, 2020, 15 (10), ⟨10.1371/journal.pone.0239591⟩ |
| locations[5].landing_page_url | https://hal.inrae.fr/hal-03436148 |
| locations[6].id | pmh:oai:RePEc:plo:pone00:0239591 |
| locations[6].is_oa | False |
| locations[6].source.id | https://openalex.org/S4306401271 |
| locations[6].source.issn | |
| locations[6].source.type | repository |
| locations[6].source.is_oa | False |
| locations[6].source.issn_l | |
| locations[6].source.is_core | False |
| locations[6].source.is_in_doaj | False |
| locations[6].source.display_name | RePEc: Research Papers in Economics |
| locations[6].source.host_organization | https://openalex.org/I77793887 |
| locations[6].source.host_organization_name | Federal Reserve Bank of St. Louis |
| locations[6].source.host_organization_lineage | https://openalex.org/I77793887 |
| locations[6].license | |
| locations[6].pdf_url | |
| locations[6].version | submittedVersion |
| locations[6].raw_type | article |
| locations[6].license_id | |
| locations[6].is_accepted | False |
| locations[6].is_published | False |
| locations[6].raw_source_name | |
| locations[6].landing_page_url | https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239591 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5083387066 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-6925-0126 |
| authorships[0].author.display_name | Julian D. Colorado |
| authorships[0].countries | CO |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[0].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[0].institutions[0].id | https://openalex.org/I233745408 |
| authorships[0].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[0].institutions[0].country_code | CO |
| authorships[0].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Julian D. Colorado |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[1].author.id | https://openalex.org/A5063433363 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-8681-415X |
| authorships[1].author.display_name | Francisco Calderón |
| authorships[1].countries | CO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[1].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[1].institutions[0].id | https://openalex.org/I233745408 |
| authorships[1].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[1].institutions[0].country_code | CO |
| authorships[1].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Francisco Calderon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[2].author.id | https://openalex.org/A5036687213 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9866-4416 |
| authorships[2].author.display_name | Diego Méndez |
| authorships[2].countries | CO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[2].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[2].institutions[0].id | https://openalex.org/I233745408 |
| authorships[2].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[2].institutions[0].country_code | CO |
| authorships[2].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Diego Mendez |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[3].author.id | https://openalex.org/A5063167881 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0577-6532 |
| authorships[3].author.display_name | E. Petró |
| authorships[3].countries | CO |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I64492213 |
| authorships[3].affiliations[0].raw_affiliation_string | CIAT - International Center for Tropical Agriculture [Colombie] (Headquarters, Cali, Colombia - Colombia) |
| authorships[3].institutions[0].id | https://openalex.org/I64492213 |
| authorships[3].institutions[0].ror | https://ror.org/037wny167 |
| authorships[3].institutions[0].type | nonprofit |
| authorships[3].institutions[0].lineage | https://openalex.org/I1286583668, https://openalex.org/I64492213 |
| authorships[3].institutions[0].country_code | CO |
| authorships[3].institutions[0].display_name | International Center for Tropical Agriculture |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Eliel Petro |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CIAT - International Center for Tropical Agriculture [Colombie] (Headquarters, Cali, Colombia - Colombia) |
| authorships[4].author.id | https://openalex.org/A5111521693 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Juan P. Rojas |
| authorships[4].countries | CO, FR |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I4210101743 |
| authorships[4].affiliations[0].raw_affiliation_string | ICAR - Image & Interaction (LIRMM, 161 rue Ada, 34000 Montpellier - France) |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I233745408 |
| authorships[4].affiliations[1].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[4].institutions[0].id | https://openalex.org/I233745408 |
| authorships[4].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[4].institutions[0].country_code | CO |
| authorships[4].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[4].institutions[1].id | https://openalex.org/I4210101743 |
| authorships[4].institutions[1].ror | https://ror.org/013yean28 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I151295451, https://openalex.org/I19894307, https://openalex.org/I4210101743, https://openalex.org/I4210159245, https://openalex.org/I4412460525 |
| authorships[4].institutions[1].country_code | FR |
| authorships[4].institutions[1].display_name | Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Juan P. Rojas |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | ICAR - Image & Interaction (LIRMM, 161 rue Ada, 34000 Montpellier - France), Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[5].author.id | https://openalex.org/A5038260623 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-1477-6825 |
| authorships[5].author.display_name | Edgar S. Correa |
| authorships[5].countries | CO |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[5].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[5].institutions[0].id | https://openalex.org/I233745408 |
| authorships[5].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[5].institutions[0].country_code | CO |
| authorships[5].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Edgar S. Correa |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[6].author.id | https://openalex.org/A5012664626 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-7828-6681 |
| authorships[6].author.display_name | Iván F. Mondragón |
| authorships[6].countries | CO |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[6].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[6].institutions[0].id | https://openalex.org/I233745408 |
| authorships[6].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[6].institutions[0].country_code | CO |
| authorships[6].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Ivan F. Mondragon |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[7].author.id | https://openalex.org/A5107809165 |
| authorships[7].author.orcid | https://orcid.org/0000-0003-3932-2747 |
| authorships[7].author.display_name | Maria Camila Rebolledo |
| authorships[7].countries | CO, FR |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I251321805, https://openalex.org/I4210120904 |
| authorships[7].affiliations[0].raw_affiliation_string | UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (TA A-108 / 03 - Avenue Agropolis - 34398 Montpellier Cedex 5 France - France) |
| authorships[7].affiliations[1].institution_ids | https://openalex.org/I131077856, https://openalex.org/I251321805 |
| authorships[7].affiliations[1].raw_affiliation_string | Cirad-BIOS - Département Systèmes Biologiques (Avenue Agropolis TA A-DIR / 04 34398 Montpellier Cedex 5 France - France) |
| authorships[7].affiliations[2].institution_ids | https://openalex.org/I64492213 |
| authorships[7].affiliations[2].raw_affiliation_string | CIAT - International Center for Tropical Agriculture [Colombie] (Headquarters, Cali, Colombia - Colombia) |
| authorships[7].institutions[0].id | https://openalex.org/I64492213 |
| authorships[7].institutions[0].ror | https://ror.org/037wny167 |
| authorships[7].institutions[0].type | nonprofit |
| authorships[7].institutions[0].lineage | https://openalex.org/I1286583668, https://openalex.org/I64492213 |
| authorships[7].institutions[0].country_code | CO |
| authorships[7].institutions[0].display_name | International Center for Tropical Agriculture |
| authorships[7].institutions[1].id | https://openalex.org/I251321805 |
| authorships[7].institutions[1].ror | https://ror.org/00txxwv34 |
| authorships[7].institutions[1].type | other |
| authorships[7].institutions[1].lineage | https://openalex.org/I251321805 |
| authorships[7].institutions[1].country_code | FR |
| authorships[7].institutions[1].display_name | Agropolis International |
| authorships[7].institutions[2].id | https://openalex.org/I131077856 |
| authorships[7].institutions[2].ror | https://ror.org/05kpkpg04 |
| authorships[7].institutions[2].type | facility |
| authorships[7].institutions[2].lineage | https://openalex.org/I131077856 |
| authorships[7].institutions[2].country_code | FR |
| authorships[7].institutions[2].display_name | Centre de Coopération Internationale en Recherche Agronomique pour le Développement |
| authorships[7].institutions[3].id | https://openalex.org/I4210120904 |
| authorships[7].institutions[3].ror | https://ror.org/02w4exq36 |
| authorships[7].institutions[3].type | facility |
| authorships[7].institutions[3].lineage | https://openalex.org/I131077856, https://openalex.org/I19894307, https://openalex.org/I24906876, https://openalex.org/I4210088668, https://openalex.org/I4210117091, https://openalex.org/I4210120904, https://openalex.org/I4399657933 |
| authorships[7].institutions[3].country_code | FR |
| authorships[7].institutions[3].display_name | Genetic Improvement and Adaptation of Mediterranean and Tropical Plants |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Maria Camila Rebolledo |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | CIAT - International Center for Tropical Agriculture [Colombie] (Headquarters, Cali, Colombia - Colombia), Cirad-BIOS - Département Systèmes Biologiques (Avenue Agropolis TA A-DIR / 04 34398 Montpellier Cedex 5 France - France), UMR AGAP - Amélioration génétique et adaptation des plantes méditerranéennes et tropicales (TA A-108 / 03 - Avenue Agropolis - 34398 Montpellier Cedex 5 France - France) |
| authorships[8].author.id | https://openalex.org/A5040549192 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-2844-0756 |
| authorships[8].author.display_name | Andrés Jaramillo-Botero |
| authorships[8].countries | CO, US |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I233745408 |
| authorships[8].affiliations[0].raw_affiliation_string | Pontificia universidad Javeriana, Cali (Colombia) |
| authorships[8].affiliations[1].institution_ids | https://openalex.org/I122411786 |
| authorships[8].affiliations[1].raw_affiliation_string | CALTECH - California Institute of Technology (1200 East California Blvd, Pasadena, California 91125 - United States) |
| authorships[8].institutions[0].id | https://openalex.org/I233745408 |
| authorships[8].institutions[0].ror | https://ror.org/03etyjw28 |
| authorships[8].institutions[0].type | education |
| authorships[8].institutions[0].lineage | https://openalex.org/I233745408 |
| authorships[8].institutions[0].country_code | CO |
| authorships[8].institutions[0].display_name | Pontificia Universidad Javeriana |
| authorships[8].institutions[1].id | https://openalex.org/I122411786 |
| authorships[8].institutions[1].ror | https://ror.org/05dxps055 |
| authorships[8].institutions[1].type | education |
| authorships[8].institutions[1].lineage | https://openalex.org/I122411786 |
| authorships[8].institutions[1].country_code | US |
| authorships[8].institutions[1].display_name | California Institute of Technology |
| authorships[8].author_position | last |
| authorships[8].raw_author_name | Andres Jaramillo-Botero |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | CALTECH - California Institute of Technology (1200 East California Blvd, Pasadena, California 91125 - United States), Pontificia universidad Javeriana, Cali (Colombia) |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printable |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A novel NIR-image segmentation method for the precise estimation of above-ground biomass in rice crops |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10111 |
| primary_topic.field.id | https://openalex.org/fields/23 |
| primary_topic.field.display_name | Environmental Science |
| primary_topic.score | 0.9970999956130981 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2303 |
| primary_topic.subfield.display_name | Ecology |
| primary_topic.display_name | Remote Sensing in Agriculture |
| related_works | https://openalex.org/W4318664220, https://openalex.org/W2771047279, https://openalex.org/W4388409104, https://openalex.org/W1544811710, https://openalex.org/W2124951708, https://openalex.org/W172072032, https://openalex.org/W2006066416, https://openalex.org/W3157073418, https://openalex.org/W2039041387, https://openalex.org/W1522196789 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 5 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 6 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| locations_count | 7 |
| best_oa_location.id | doi:10.1371/journal.pone.0239591 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S202381698 |
| best_oa_location.source.issn | 1932-6203 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1932-6203 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | PLoS ONE |
| best_oa_location.source.host_organization | https://openalex.org/P4310315706 |
| best_oa_location.source.host_organization_name | Public Library of Science |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printable |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | PLOS ONE |
| best_oa_location.landing_page_url | https://doi.org/10.1371/journal.pone.0239591 |
| primary_location.id | doi:10.1371/journal.pone.0239591 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S202381698 |
| primary_location.source.issn | 1932-6203 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1932-6203 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | PLoS ONE |
| primary_location.source.host_organization | https://openalex.org/P4310315706 |
| primary_location.source.host_organization_name | Public Library of Science |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310315706 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0239591&type=printable |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | PLOS ONE |
| primary_location.landing_page_url | https://doi.org/10.1371/journal.pone.0239591 |
| publication_date | 2020-10-05 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2897373653, https://openalex.org/W2043542618, https://openalex.org/W2920653747, https://openalex.org/W2921122163, https://openalex.org/W2928782015, https://openalex.org/W2728224506, https://openalex.org/W2918084323, https://openalex.org/W2765453548, https://openalex.org/W2802890933, https://openalex.org/W2941400914, https://openalex.org/W1900944452, https://openalex.org/W2890011456, https://openalex.org/W2562786021, https://openalex.org/W3015527879, https://openalex.org/W2612158506, https://openalex.org/W2328015724, https://openalex.org/W2646675373, https://openalex.org/W2911264809, https://openalex.org/W2998330714, https://openalex.org/W2272083780, https://openalex.org/W2939018547, https://openalex.org/W2968752509, https://openalex.org/W2886554959, https://openalex.org/W2912553934, https://openalex.org/W2602397844, https://openalex.org/W2174758245, https://openalex.org/W3037968153, https://openalex.org/W2919795560, https://openalex.org/W2124351162, https://openalex.org/W2151084831, https://openalex.org/W2169551590, https://openalex.org/W2139762693, https://openalex.org/W2150134853, https://openalex.org/W2253751820, https://openalex.org/W2010308608, https://openalex.org/W2572077381, https://openalex.org/W2746501984, https://openalex.org/W2046292468, https://openalex.org/W2020052823, https://openalex.org/W2099951869, https://openalex.org/W3045041747, https://openalex.org/W2125188192 |
| referenced_works_count | 42 |
| abstract_inverted_index.= | 130, 134 |
| abstract_inverted_index.A | 153 |
| abstract_inverted_index.a | 10, 22, 61, 65, 70, 147 |
| abstract_inverted_index.r | 129 |
| abstract_inverted_index.In | 17 |
| abstract_inverted_index.R2 | 133 |
| abstract_inverted_index.We | 141 |
| abstract_inverted_index.an | 35, 126 |
| abstract_inverted_index.by | 45 |
| abstract_inverted_index.in | 6, 158 |
| abstract_inverted_index.of | 14, 29, 81, 103, 110, 128, 156 |
| abstract_inverted_index.on | 9, 60, 151 |
| abstract_inverted_index.to | 2, 94, 99, 137, 165 |
| abstract_inverted_index.we | 20 |
| abstract_inverted_index.13% | 157 |
| abstract_inverted_index.and | 43, 69, 106, 116, 132 |
| abstract_inverted_index.for | 26 |
| abstract_inverted_index.our | 143 |
| abstract_inverted_index.the | 15, 27, 47, 56, 79, 96, 100, 104, 107, 138, 159, 166 |
| abstract_inverted_index.two | 111 |
| abstract_inverted_index.was | 41, 162 |
| abstract_inverted_index.0.91 | 135 |
| abstract_inverted_index.0.95 | 131 |
| abstract_inverted_index.AGBD | 97, 122 |
| abstract_inverted_index.crop | 105 |
| abstract_inverted_index.plot | 57, 75 |
| abstract_inverted_index.rely | 8 |
| abstract_inverted_index.rice | 112 |
| abstract_inverted_index.that | 53 |
| abstract_inverted_index.this | 18 |
| abstract_inverted_index.were | 92 |
| abstract_inverted_index.with | 86, 125 |
| abstract_inverted_index.based | 59, 67, 150 |
| abstract_inverted_index.crop. | 16 |
| abstract_inverted_index.data. | 140 |
| abstract_inverted_index.image | 72 |
| abstract_inverted_index.under | 114 |
| abstract_inverted_index.using | 34, 46 |
| abstract_inverted_index.(AGBD) | 33 |
| abstract_inverted_index.aerial | 37 |
| abstract_inverted_index.called | 51 |
| abstract_inverted_index.canopy | 58, 83 |
| abstract_inverted_index.growth | 101 |
| abstract_inverted_index.guided | 71 |
| abstract_inverted_index.labels | 55 |
| abstract_inverted_index.method | 50, 145, 168 |
| abstract_inverted_index.model, | 64 |
| abstract_inverted_index.paper, | 19 |
| abstract_inverted_index.report | 121 |
| abstract_inverted_index.stages | 102 |
| abstract_inverted_index.thanks | 164 |
| abstract_inverted_index.upland | 117 |
| abstract_inverted_index.yield. | 88 |
| abstract_inverted_index.Biomass | 31 |
| abstract_inverted_index.GFKuts, | 52 |
| abstract_inverted_index.Machine | 89 |
| abstract_inverted_index.Results | 120 |
| abstract_inverted_index.against | 146 |
| abstract_inverted_index.average | 127 |
| abstract_inverted_index.biomass | 7, 87, 160 |
| abstract_inverted_index.enabled | 78 |
| abstract_inverted_index.herein. | 170 |
| abstract_inverted_index.imagery | 40 |
| abstract_inverted_index.lowland | 115 |
| abstract_inverted_index.measure | 3 |
| abstract_inverted_index.methods | 1 |
| abstract_inverted_index.mixture | 63 |
| abstract_inverted_index.present | 21 |
| abstract_inverted_index.results | 77 |
| abstract_inverted_index.several | 82 |
| abstract_inverted_index.system. | 38 |
| abstract_inverted_index.trained | 93 |
| abstract_inverted_index.Accurate | 74 |
| abstract_inverted_index.Dynamics | 32 |
| abstract_inverted_index.Gaussian | 62 |
| abstract_inverted_index.K-means, | 68 |
| abstract_inverted_index.acquired | 42 |
| abstract_inverted_index.approach | 25 |
| abstract_inverted_index.compared | 142 |
| abstract_inverted_index.estimate | 95 |
| abstract_inverted_index.features | 84 |
| abstract_inverted_index.learning | 90 |
| abstract_inverted_index.obtained | 163 |
| abstract_inverted_index.proposed | 48, 169 |
| abstract_inverted_index.response | 109 |
| abstract_inverted_index.sampling | 13 |
| abstract_inverted_index.systems. | 119 |
| abstract_inverted_index.unmanned | 36 |
| abstract_inverted_index.according | 98, 136 |
| abstract_inverted_index.genotypes | 113 |
| abstract_inverted_index.optimally | 54 |
| abstract_inverted_index.processed | 44 |
| abstract_inverted_index.technique | 149 |
| abstract_inverted_index.Montecarlo | 66 |
| abstract_inverted_index.algorithms | 91 |
| abstract_inverted_index.associated | 85 |
| abstract_inverted_index.estimation | 28, 123 |
| abstract_inverted_index.extraction | 80 |
| abstract_inverted_index.filtering. | 73 |
| abstract_inverted_index.production | 118 |
| abstract_inverted_index.variations | 5 |
| abstract_inverted_index.Traditional | 0 |
| abstract_inverted_index.clustering. | 152 |
| abstract_inverted_index.correlation | 161 |
| abstract_inverted_index.destructive | 12 |
| abstract_inverted_index.improvement | 155 |
| abstract_inverted_index.phenotyping | 24 |
| abstract_inverted_index.traditional | 148 |
| abstract_inverted_index.Above-Ground | 30 |
| abstract_inverted_index.correlations | 124 |
| abstract_inverted_index.experimental | 139 |
| abstract_inverted_index.segmentation | 49, 76, 144, 167 |
| abstract_inverted_index.Multispectral | 39 |
| abstract_inverted_index.comprehensive | 154 |
| abstract_inverted_index.physiological | 108 |
| abstract_inverted_index.high-throughput | 23 |
| abstract_inverted_index.labor-intensive | 11 |
| abstract_inverted_index.spatio-temporal | 4 |
| cited_by_percentile_year.max | 98 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 9 |
| citation_normalized_percentile.value | 0.86801314 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |