A Novel Nonferrous Metals Price Prediction Model Based on BiLSTM-ResNet with Grey Wolf Optimization and Wavelet Transform Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.3233/faia231018
Nonferrous metals are important commodities, and it is of great significance for policy makers and investors to accurately predict their price changes. Nevertheless, because the price of nonferrous metals present drastic fluctuations, developing a robust price prediction method is a tricky task. In this research, a hybrid model based on discrete wavelet transform (DWT), bidirectional long short-term memory (BiLSTM) and residual network (ResNet) is constructed for nonferrous metals price prediction. The hyper-parameters of the hybrid neural network are searched by grey wolf optimization (GWO) algorithm. Configuring reasonable parameters, which enhances the final prediction effect. Additionally, behind the second hidden layer, the low and high dimensional features are fused to prevent the degradation of the model. The original sequence is processed by DWT technology, then the sequence is reconstructed, which is beneficial to capture the essential trend. The experimental results show that the proposed BiLSTM-ResNet-GWO-DWT model is more accurate compared with the other benchmark models, which provides an effective reference significance.
Related Topics
- Type
- book-chapter
- Language
- en
- Landing Page
- https://doi.org/10.3233/faia231018
- https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018
- OA Status
- hybrid
- References
- 31
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4389762976
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4389762976Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3233/faia231018Digital Object Identifier
- Title
-
A Novel Nonferrous Metals Price Prediction Model Based on BiLSTM-ResNet with Grey Wolf Optimization and Wavelet TransformWork title
- Type
-
book-chapterOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-12-12Full publication date if available
- Authors
-
Zhanglong Li, Yunlei Yang, Jiachun Zheng, Yang Wu, Yinghao ChenList of authors in order
- Landing page
-
https://doi.org/10.3233/faia231018Publisher landing page
- PDF URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
hybridOpen access status per OpenAlex
- OA URL
-
https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018Direct OA link when available
- Concepts
-
Residual, Discrete wavelet transform, Benchmark (surveying), Artificial neural network, Sequence (biology), Artificial intelligence, Wavelet transform, Computer science, Pattern recognition (psychology), Wavelet, Algorithm, Geography, Chemistry, Geodesy, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
31Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4389762976 |
|---|---|
| doi | https://doi.org/10.3233/faia231018 |
| ids.doi | https://doi.org/10.3233/faia231018 |
| ids.openalex | https://openalex.org/W4389762976 |
| fwci | 0.0 |
| type | book-chapter |
| title | A Novel Nonferrous Metals Price Prediction Model Based on BiLSTM-ResNet with Grey Wolf Optimization and Wavelet Transform |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10438 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.7781000137329102 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Energy, Environment, Economic Growth |
| topics[1].id | https://openalex.org/T12368 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.7454000115394592 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Grey System Theory Applications |
| topics[2].id | https://openalex.org/T12111 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.7038999795913696 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2209 |
| topics[2].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[2].display_name | Industrial Vision Systems and Defect Detection |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C155512373 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6645305156707764 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[0].display_name | Residual |
| concepts[1].id | https://openalex.org/C46286280 |
| concepts[1].level | 4 |
| concepts[1].score | 0.6130838394165039 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q2414958 |
| concepts[1].display_name | Discrete wavelet transform |
| concepts[2].id | https://openalex.org/C185798385 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5670658349990845 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[2].display_name | Benchmark (surveying) |
| concepts[3].id | https://openalex.org/C50644808 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5194539427757263 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[3].display_name | Artificial neural network |
| concepts[4].id | https://openalex.org/C2778112365 |
| concepts[4].level | 2 |
| concepts[4].score | 0.49349844455718994 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q3511065 |
| concepts[4].display_name | Sequence (biology) |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.4632054567337036 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C196216189 |
| concepts[6].level | 3 |
| concepts[6].score | 0.45645448565483093 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2867 |
| concepts[6].display_name | Wavelet transform |
| concepts[7].id | https://openalex.org/C41008148 |
| concepts[7].level | 0 |
| concepts[7].score | 0.4340798556804657 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[7].display_name | Computer science |
| concepts[8].id | https://openalex.org/C153180895 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4081915318965912 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[8].display_name | Pattern recognition (psychology) |
| concepts[9].id | https://openalex.org/C47432892 |
| concepts[9].level | 2 |
| concepts[9].score | 0.38010191917419434 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q831390 |
| concepts[9].display_name | Wavelet |
| concepts[10].id | https://openalex.org/C11413529 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3756219148635864 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[10].display_name | Algorithm |
| concepts[11].id | https://openalex.org/C205649164 |
| concepts[11].level | 0 |
| concepts[11].score | 0.09382572770118713 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[11].display_name | Geography |
| concepts[12].id | https://openalex.org/C185592680 |
| concepts[12].level | 0 |
| concepts[12].score | 0.08391565084457397 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[12].display_name | Chemistry |
| concepts[13].id | https://openalex.org/C13280743 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[13].display_name | Geodesy |
| concepts[14].id | https://openalex.org/C55493867 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[14].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/residual |
| keywords[0].score | 0.6645305156707764 |
| keywords[0].display_name | Residual |
| keywords[1].id | https://openalex.org/keywords/discrete-wavelet-transform |
| keywords[1].score | 0.6130838394165039 |
| keywords[1].display_name | Discrete wavelet transform |
| keywords[2].id | https://openalex.org/keywords/benchmark |
| keywords[2].score | 0.5670658349990845 |
| keywords[2].display_name | Benchmark (surveying) |
| keywords[3].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[3].score | 0.5194539427757263 |
| keywords[3].display_name | Artificial neural network |
| keywords[4].id | https://openalex.org/keywords/sequence |
| keywords[4].score | 0.49349844455718994 |
| keywords[4].display_name | Sequence (biology) |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.4632054567337036 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/wavelet-transform |
| keywords[6].score | 0.45645448565483093 |
| keywords[6].display_name | Wavelet transform |
| keywords[7].id | https://openalex.org/keywords/computer-science |
| keywords[7].score | 0.4340798556804657 |
| keywords[7].display_name | Computer science |
| keywords[8].id | https://openalex.org/keywords/pattern-recognition |
| keywords[8].score | 0.4081915318965912 |
| keywords[8].display_name | Pattern recognition (psychology) |
| keywords[9].id | https://openalex.org/keywords/wavelet |
| keywords[9].score | 0.38010191917419434 |
| keywords[9].display_name | Wavelet |
| keywords[10].id | https://openalex.org/keywords/algorithm |
| keywords[10].score | 0.3756219148635864 |
| keywords[10].display_name | Algorithm |
| keywords[11].id | https://openalex.org/keywords/geography |
| keywords[11].score | 0.09382572770118713 |
| keywords[11].display_name | Geography |
| keywords[12].id | https://openalex.org/keywords/chemistry |
| keywords[12].score | 0.08391565084457397 |
| keywords[12].display_name | Chemistry |
| language | en |
| locations[0].id | doi:10.3233/faia231018 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201731 |
| locations[0].source.issn | 0922-6389, 1879-8314 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0922-6389 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Frontiers in artificial intelligence and applications |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].source.host_organization_lineage | |
| locations[0].license | cc-by-nc |
| locations[0].pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | book-chapter |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Frontiers in Artificial Intelligence and Applications |
| locations[0].landing_page_url | https://doi.org/10.3233/faia231018 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5061051576 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Zhanglong Li |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[0].institutions[0].id | https://openalex.org/I178232147 |
| authorships[0].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guizhou University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Zhanglong Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[1].author.id | https://openalex.org/A5101047123 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yunlei Yang |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[1].institutions[0].id | https://openalex.org/I178232147 |
| authorships[1].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guizhou University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunlei Yang |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[2].author.id | https://openalex.org/A5102912854 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Jiachun Zheng |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[2].institutions[0].id | https://openalex.org/I178232147 |
| authorships[2].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guizhou University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Jiachun Zheng |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[3].author.id | https://openalex.org/A5100741284 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3903-0111 |
| authorships[3].author.display_name | Yang Wu |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I178232147 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[3].institutions[0].id | https://openalex.org/I178232147 |
| authorships[3].institutions[0].ror | https://ror.org/02wmsc916 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I178232147 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guizhou University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Yang Wu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mathematics and Statistics, Guizhou University, Guiyang, Guizhou 550025, China |
| authorships[4].author.id | https://openalex.org/A5069346576 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9176-8394 |
| authorships[4].author.display_name | Yinghao Chen |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].raw_affiliation_string | Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo, Zhejiang 315201, China |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I139660479 |
| authorships[4].affiliations[1].raw_affiliation_string | Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo, Zhejiang 315201, China; School of Mathematics and Statistics, Central South University, Changsha, 410083, China |
| authorships[4].institutions[0].id | https://openalex.org/I139660479 |
| authorships[4].institutions[0].ror | https://ror.org/00f1zfq44 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I139660479 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Central South University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Yinghao Chen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo, Zhejiang 315201, China, Eastern Institute for Advanced Study, Yongriver Institute of Technology, Ningbo, Zhejiang 315201, China; School of Mathematics and Statistics, Central South University, Changsha, 410083, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018 |
| open_access.oa_status | hybrid |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Nonferrous Metals Price Prediction Model Based on BiLSTM-ResNet with Grey Wolf Optimization and Wavelet Transform |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10438 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.7781000137329102 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Energy, Environment, Economic Growth |
| related_works | https://openalex.org/W183670115, https://openalex.org/W1501179639, https://openalex.org/W3199035354, https://openalex.org/W2085792030, https://openalex.org/W1807354010, https://openalex.org/W3143644526, https://openalex.org/W598225674, https://openalex.org/W2734230146, https://openalex.org/W1588899229, https://openalex.org/W2077021924 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3233/faia231018 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201731 |
| best_oa_location.source.issn | 0922-6389, 1879-8314 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | 0922-6389 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Frontiers in artificial intelligence and applications |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.source.host_organization_lineage | |
| best_oa_location.license | cc-by-nc |
| best_oa_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | book-chapter |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| best_oa_location.landing_page_url | https://doi.org/10.3233/faia231018 |
| primary_location.id | doi:10.3233/faia231018 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201731 |
| primary_location.source.issn | 0922-6389, 1879-8314 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0922-6389 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Frontiers in artificial intelligence and applications |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.source.host_organization_lineage | |
| primary_location.license | cc-by-nc |
| primary_location.pdf_url | https://ebooks.iospress.nl/pdf/doi/10.3233/FAIA231018 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | book-chapter |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Frontiers in Artificial Intelligence and Applications |
| primary_location.landing_page_url | https://doi.org/10.3233/faia231018 |
| publication_date | 2023-12-12 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W2896018779, https://openalex.org/W2170529788, https://openalex.org/W1972732865, https://openalex.org/W2074173695, https://openalex.org/W2985123151, https://openalex.org/W2996345241, https://openalex.org/W3177806728, https://openalex.org/W2306547824, https://openalex.org/W2971907746, https://openalex.org/W2580977989, https://openalex.org/W4383820169, https://openalex.org/W2981224608, https://openalex.org/W4287879957, https://openalex.org/W3048494751, https://openalex.org/W3040674358, https://openalex.org/W4200548039, https://openalex.org/W4283644288, https://openalex.org/W3213310772, https://openalex.org/W3039642166, https://openalex.org/W2955168531, https://openalex.org/W3112298559, https://openalex.org/W2194775991, https://openalex.org/W3214377546, https://openalex.org/W2163605009, https://openalex.org/W3024836774, https://openalex.org/W2901625170, https://openalex.org/W2936404407, https://openalex.org/W4226530624, https://openalex.org/W2798074997, https://openalex.org/W3173615300, https://openalex.org/W2618530766 |
| referenced_works_count | 31 |
| abstract_inverted_index.a | 33, 39, 45 |
| abstract_inverted_index.In | 42 |
| abstract_inverted_index.an | 156 |
| abstract_inverted_index.by | 79, 120 |
| abstract_inverted_index.is | 7, 38, 63, 118, 126, 129, 145 |
| abstract_inverted_index.it | 6 |
| abstract_inverted_index.of | 8, 26, 72, 112 |
| abstract_inverted_index.on | 49 |
| abstract_inverted_index.to | 16, 108, 131 |
| abstract_inverted_index.DWT | 121 |
| abstract_inverted_index.The | 70, 115, 136 |
| abstract_inverted_index.and | 5, 14, 59, 102 |
| abstract_inverted_index.are | 2, 77, 106 |
| abstract_inverted_index.for | 11, 65 |
| abstract_inverted_index.low | 101 |
| abstract_inverted_index.the | 24, 73, 90, 96, 100, 110, 113, 124, 133, 141, 150 |
| abstract_inverted_index.grey | 80 |
| abstract_inverted_index.high | 103 |
| abstract_inverted_index.long | 55 |
| abstract_inverted_index.more | 146 |
| abstract_inverted_index.show | 139 |
| abstract_inverted_index.that | 140 |
| abstract_inverted_index.then | 123 |
| abstract_inverted_index.this | 43 |
| abstract_inverted_index.with | 149 |
| abstract_inverted_index.wolf | 81 |
| abstract_inverted_index.(GWO) | 83 |
| abstract_inverted_index.based | 48 |
| abstract_inverted_index.final | 91 |
| abstract_inverted_index.fused | 107 |
| abstract_inverted_index.great | 9 |
| abstract_inverted_index.model | 47, 144 |
| abstract_inverted_index.other | 151 |
| abstract_inverted_index.price | 20, 25, 35, 68 |
| abstract_inverted_index.task. | 41 |
| abstract_inverted_index.their | 19 |
| abstract_inverted_index.which | 88, 128, 154 |
| abstract_inverted_index.(DWT), | 53 |
| abstract_inverted_index.behind | 95 |
| abstract_inverted_index.hidden | 98 |
| abstract_inverted_index.hybrid | 46, 74 |
| abstract_inverted_index.layer, | 99 |
| abstract_inverted_index.makers | 13 |
| abstract_inverted_index.memory | 57 |
| abstract_inverted_index.metals | 1, 28, 67 |
| abstract_inverted_index.method | 37 |
| abstract_inverted_index.model. | 114 |
| abstract_inverted_index.neural | 75 |
| abstract_inverted_index.policy | 12 |
| abstract_inverted_index.robust | 34 |
| abstract_inverted_index.second | 97 |
| abstract_inverted_index.trend. | 135 |
| abstract_inverted_index.tricky | 40 |
| abstract_inverted_index.because | 23 |
| abstract_inverted_index.capture | 132 |
| abstract_inverted_index.drastic | 30 |
| abstract_inverted_index.effect. | 93 |
| abstract_inverted_index.models, | 153 |
| abstract_inverted_index.network | 61, 76 |
| abstract_inverted_index.predict | 18 |
| abstract_inverted_index.present | 29 |
| abstract_inverted_index.prevent | 109 |
| abstract_inverted_index.results | 138 |
| abstract_inverted_index.wavelet | 51 |
| abstract_inverted_index.(BiLSTM) | 58 |
| abstract_inverted_index.(ResNet) | 62 |
| abstract_inverted_index.accurate | 147 |
| abstract_inverted_index.changes. | 21 |
| abstract_inverted_index.compared | 148 |
| abstract_inverted_index.discrete | 50 |
| abstract_inverted_index.enhances | 89 |
| abstract_inverted_index.features | 105 |
| abstract_inverted_index.original | 116 |
| abstract_inverted_index.proposed | 142 |
| abstract_inverted_index.provides | 155 |
| abstract_inverted_index.residual | 60 |
| abstract_inverted_index.searched | 78 |
| abstract_inverted_index.sequence | 117, 125 |
| abstract_inverted_index.benchmark | 152 |
| abstract_inverted_index.effective | 157 |
| abstract_inverted_index.essential | 134 |
| abstract_inverted_index.important | 3 |
| abstract_inverted_index.investors | 15 |
| abstract_inverted_index.processed | 119 |
| abstract_inverted_index.reference | 158 |
| abstract_inverted_index.research, | 44 |
| abstract_inverted_index.transform | 52 |
| abstract_inverted_index.Nonferrous | 0 |
| abstract_inverted_index.accurately | 17 |
| abstract_inverted_index.algorithm. | 84 |
| abstract_inverted_index.beneficial | 130 |
| abstract_inverted_index.developing | 32 |
| abstract_inverted_index.nonferrous | 27, 66 |
| abstract_inverted_index.prediction | 36, 92 |
| abstract_inverted_index.reasonable | 86 |
| abstract_inverted_index.short-term | 56 |
| abstract_inverted_index.Configuring | 85 |
| abstract_inverted_index.constructed | 64 |
| abstract_inverted_index.degradation | 111 |
| abstract_inverted_index.dimensional | 104 |
| abstract_inverted_index.parameters, | 87 |
| abstract_inverted_index.prediction. | 69 |
| abstract_inverted_index.technology, | 122 |
| abstract_inverted_index.commodities, | 4 |
| abstract_inverted_index.experimental | 137 |
| abstract_inverted_index.optimization | 82 |
| abstract_inverted_index.significance | 10 |
| abstract_inverted_index.Additionally, | 94 |
| abstract_inverted_index.Nevertheless, | 22 |
| abstract_inverted_index.bidirectional | 54 |
| abstract_inverted_index.fluctuations, | 31 |
| abstract_inverted_index.significance. | 159 |
| abstract_inverted_index.reconstructed, | 127 |
| abstract_inverted_index.hyper-parameters | 71 |
| abstract_inverted_index.BiLSTM-ResNet-GWO-DWT | 143 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.68407072 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |