A Novel Sensor Data Pre-Processing Methodology for the Internet of Things Using Anomaly Detection and Transfer-By-Subspace-Similarity Transformation Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.3390/s19204536
The Internet of Things (IoT) and sensors are becoming increasingly popular, especially in monitoring large and ambient environments. Applications that embrace IoT and sensors often require mining the data feeds that are collected at frequent intervals for intelligence. Despite the fact that such sensor data are massive, most of the data contents are identical and repetitive; for example, human traffic in a park at night. Most of the traditional classification algorithms were originally formulated decades ago, and they were not designed to handle such sensor data effectively. Hence, the performance of the learned model is often poor because of the small granularity in classification and the sporadic patterns in the data. To improve the quality of data mining from the IoT data, a new pre-processing methodology based on subspace similarity detection is proposed. Our method can be well integrated with traditional data mining algorithms and anomaly detection methods. The pre-processing method is flexible for handling similar kinds of sensor data that are sporadic in nature that exist in many ambient sensing applications. The proposed methodology is evaluated by extensive experiment with a collection of classical data mining models. An improvement over the precision rate is shown by using the proposed method.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/s19204536
- https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621
- OA Status
- gold
- Cited By
- 15
- References
- 33
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2980444234
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2980444234Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/s19204536Digital Object Identifier
- Title
-
A Novel Sensor Data Pre-Processing Methodology for the Internet of Things Using Anomaly Detection and Transfer-By-Subspace-Similarity TransformationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-10-18Full publication date if available
- Authors
-
Yan Zhong, Simon Fong, Shimin Hu, Raymond K. Wong, Weiwei LinList of authors in order
- Landing page
-
https://doi.org/10.3390/s19204536Publisher landing page
- PDF URL
-
https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621Direct OA link when available
- Concepts
-
Data mining, Computer science, Anomaly detection, Subspace topology, Granularity, Data stream mining, Data quality, Data processing, Similarity (geometry), Internet of Things, Data collection, Artificial intelligence, Engineering, Database, Embedded system, Operations management, Image (mathematics), Operating system, Statistics, Metric (unit), MathematicsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
15Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 3, 2023: 3, 2022: 2, 2021: 2Per-year citation counts (last 5 years)
- References (count)
-
33Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2980444234 |
|---|---|
| doi | https://doi.org/10.3390/s19204536 |
| ids.doi | https://doi.org/10.3390/s19204536 |
| ids.mag | 2980444234 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/31635371 |
| ids.openalex | https://openalex.org/W2980444234 |
| fwci | 1.07532422 |
| type | article |
| title | A Novel Sensor Data Pre-Processing Methodology for the Internet of Things Using Anomaly Detection and Transfer-By-Subspace-Similarity Transformation |
| awards[0].id | https://openalex.org/G1227311107 |
| awards[0].funder_id | https://openalex.org/F4320326685 |
| awards[0].display_name | |
| awards[0].funder_award_id | EF004/FST-FSJ/2019/GSTIC |
| awards[0].funder_display_name | Guangzhou Science, Technology and Innovation Commission |
| awards[1].id | https://openalex.org/G2693236758 |
| awards[1].funder_id | https://openalex.org/F4320326685 |
| awards[1].display_name | |
| awards[1].funder_award_id | EF003/FST-FSJ/2019/GSTIC |
| awards[1].funder_display_name | Guangzhou Science, Technology and Innovation Commission |
| biblio.issue | 20 |
| biblio.volume | 19 |
| biblio.last_page | 4536 |
| biblio.first_page | 4536 |
| topics[0].id | https://openalex.org/T11512 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9952999949455261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Anomaly Detection Techniques and Applications |
| topics[1].id | https://openalex.org/T10080 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9933000206947327 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Energy Efficient Wireless Sensor Networks |
| topics[2].id | https://openalex.org/T11667 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9894999861717224 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2204 |
| topics[2].subfield.display_name | Biomedical Engineering |
| topics[2].display_name | Advanced Chemical Sensor Technologies |
| funders[0].id | https://openalex.org/F4320326685 |
| funders[0].ror | https://ror.org/05t4nb462 |
| funders[0].display_name | Guangzhou Science, Technology and Innovation Commission |
| is_xpac | False |
| apc_list.value | 2400 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2598 |
| apc_paid.value | 2400 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2598 |
| concepts[0].id | https://openalex.org/C124101348 |
| concepts[0].level | 1 |
| concepts[0].score | 0.7156450748443604 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[0].display_name | Data mining |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6895028352737427 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C739882 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6644046306610107 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q3560506 |
| concepts[2].display_name | Anomaly detection |
| concepts[3].id | https://openalex.org/C32834561 |
| concepts[3].level | 2 |
| concepts[3].score | 0.613500714302063 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q660730 |
| concepts[3].display_name | Subspace topology |
| concepts[4].id | https://openalex.org/C177774035 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5742833018302917 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1246948 |
| concepts[4].display_name | Granularity |
| concepts[5].id | https://openalex.org/C89198739 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5231122374534607 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3079880 |
| concepts[5].display_name | Data stream mining |
| concepts[6].id | https://openalex.org/C24756922 |
| concepts[6].level | 3 |
| concepts[6].score | 0.48008376359939575 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1757694 |
| concepts[6].display_name | Data quality |
| concepts[7].id | https://openalex.org/C138827492 |
| concepts[7].level | 2 |
| concepts[7].score | 0.47793203592300415 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q6661985 |
| concepts[7].display_name | Data processing |
| concepts[8].id | https://openalex.org/C103278499 |
| concepts[8].level | 3 |
| concepts[8].score | 0.46373334527015686 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[8].display_name | Similarity (geometry) |
| concepts[9].id | https://openalex.org/C81860439 |
| concepts[9].level | 2 |
| concepts[9].score | 0.44972938299179077 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q251212 |
| concepts[9].display_name | Internet of Things |
| concepts[10].id | https://openalex.org/C133462117 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4426899254322052 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q4929239 |
| concepts[10].display_name | Data collection |
| concepts[11].id | https://openalex.org/C154945302 |
| concepts[11].level | 1 |
| concepts[11].score | 0.32838451862335205 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[11].display_name | Artificial intelligence |
| concepts[12].id | https://openalex.org/C127413603 |
| concepts[12].level | 0 |
| concepts[12].score | 0.17388439178466797 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[12].display_name | Engineering |
| concepts[13].id | https://openalex.org/C77088390 |
| concepts[13].level | 1 |
| concepts[13].score | 0.13123533129692078 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q8513 |
| concepts[13].display_name | Database |
| concepts[14].id | https://openalex.org/C149635348 |
| concepts[14].level | 1 |
| concepts[14].score | 0.08906987309455872 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q193040 |
| concepts[14].display_name | Embedded system |
| concepts[15].id | https://openalex.org/C21547014 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q1423657 |
| concepts[15].display_name | Operations management |
| concepts[16].id | https://openalex.org/C115961682 |
| concepts[16].level | 2 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[16].display_name | Image (mathematics) |
| concepts[17].id | https://openalex.org/C111919701 |
| concepts[17].level | 1 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[17].display_name | Operating system |
| concepts[18].id | https://openalex.org/C105795698 |
| concepts[18].level | 1 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[18].display_name | Statistics |
| concepts[19].id | https://openalex.org/C176217482 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q860554 |
| concepts[19].display_name | Metric (unit) |
| concepts[20].id | https://openalex.org/C33923547 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[20].display_name | Mathematics |
| keywords[0].id | https://openalex.org/keywords/data-mining |
| keywords[0].score | 0.7156450748443604 |
| keywords[0].display_name | Data mining |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6895028352737427 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/anomaly-detection |
| keywords[2].score | 0.6644046306610107 |
| keywords[2].display_name | Anomaly detection |
| keywords[3].id | https://openalex.org/keywords/subspace-topology |
| keywords[3].score | 0.613500714302063 |
| keywords[3].display_name | Subspace topology |
| keywords[4].id | https://openalex.org/keywords/granularity |
| keywords[4].score | 0.5742833018302917 |
| keywords[4].display_name | Granularity |
| keywords[5].id | https://openalex.org/keywords/data-stream-mining |
| keywords[5].score | 0.5231122374534607 |
| keywords[5].display_name | Data stream mining |
| keywords[6].id | https://openalex.org/keywords/data-quality |
| keywords[6].score | 0.48008376359939575 |
| keywords[6].display_name | Data quality |
| keywords[7].id | https://openalex.org/keywords/data-processing |
| keywords[7].score | 0.47793203592300415 |
| keywords[7].display_name | Data processing |
| keywords[8].id | https://openalex.org/keywords/similarity |
| keywords[8].score | 0.46373334527015686 |
| keywords[8].display_name | Similarity (geometry) |
| keywords[9].id | https://openalex.org/keywords/internet-of-things |
| keywords[9].score | 0.44972938299179077 |
| keywords[9].display_name | Internet of Things |
| keywords[10].id | https://openalex.org/keywords/data-collection |
| keywords[10].score | 0.4426899254322052 |
| keywords[10].display_name | Data collection |
| keywords[11].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[11].score | 0.32838451862335205 |
| keywords[11].display_name | Artificial intelligence |
| keywords[12].id | https://openalex.org/keywords/engineering |
| keywords[12].score | 0.17388439178466797 |
| keywords[12].display_name | Engineering |
| keywords[13].id | https://openalex.org/keywords/database |
| keywords[13].score | 0.13123533129692078 |
| keywords[13].display_name | Database |
| keywords[14].id | https://openalex.org/keywords/embedded-system |
| keywords[14].score | 0.08906987309455872 |
| keywords[14].display_name | Embedded system |
| language | en |
| locations[0].id | doi:10.3390/s19204536 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S101949793 |
| locations[0].source.issn | 1424-8220 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 1424-8220 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Sensors |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Sensors |
| locations[0].landing_page_url | https://doi.org/10.3390/s19204536 |
| locations[1].id | pmid:31635371 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Sensors (Basel, Switzerland) |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/31635371 |
| locations[2].id | pmh:oai:doaj.org/article:7c05a929d3d94cd6a5f637f1f333f5a1 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S4306401280 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[2].source.host_organization | |
| locations[2].source.host_organization_name | |
| locations[2].license | cc-by-sa |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | article |
| locations[2].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | Sensors, Vol 19, Iss 20, p 4536 (2019) |
| locations[2].landing_page_url | https://doaj.org/article/7c05a929d3d94cd6a5f637f1f333f5a1 |
| locations[3].id | pmh:oai:europepmc.org:5830559 |
| locations[3].is_oa | True |
| locations[3].source.id | https://openalex.org/S4306400806 |
| locations[3].source.issn | |
| locations[3].source.type | repository |
| locations[3].source.is_oa | False |
| locations[3].source.issn_l | |
| locations[3].source.is_core | False |
| locations[3].source.is_in_doaj | False |
| locations[3].source.display_name | Europe PMC (PubMed Central) |
| locations[3].source.host_organization | https://openalex.org/I1303153112 |
| locations[3].source.host_organization_name | European Bioinformatics Institute |
| locations[3].source.host_organization_lineage | https://openalex.org/I1303153112 |
| locations[3].license | other-oa |
| locations[3].pdf_url | |
| locations[3].version | submittedVersion |
| locations[3].raw_type | Text |
| locations[3].license_id | https://openalex.org/licenses/other-oa |
| locations[3].is_accepted | False |
| locations[3].is_published | False |
| locations[3].raw_source_name | |
| locations[3].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/6832605 |
| locations[4].id | pmh:oai:mdpi.com:/1424-8220/19/20/4536/ |
| locations[4].is_oa | True |
| locations[4].source.id | https://openalex.org/S4306400947 |
| locations[4].source.issn | |
| locations[4].source.type | repository |
| locations[4].source.is_oa | True |
| locations[4].source.issn_l | |
| locations[4].source.is_core | False |
| locations[4].source.is_in_doaj | False |
| locations[4].source.display_name | MDPI (MDPI AG) |
| locations[4].source.host_organization | https://openalex.org/I4210097602 |
| locations[4].source.host_organization_name | Multidisciplinary Digital Publishing Institute (Switzerland) |
| locations[4].source.host_organization_lineage | https://openalex.org/I4210097602 |
| locations[4].license | cc-by |
| locations[4].pdf_url | |
| locations[4].version | submittedVersion |
| locations[4].raw_type | Text |
| locations[4].license_id | https://openalex.org/licenses/cc-by |
| locations[4].is_accepted | False |
| locations[4].is_published | False |
| locations[4].raw_source_name | Sensors |
| locations[4].landing_page_url | http://dx.doi.org/10.3390/s19204536 |
| indexed_in | crossref, doaj, pubmed |
| authorships[0].author.id | https://openalex.org/A5070368345 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-6344-3157 |
| authorships[0].author.display_name | Yan Zhong |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I19820366, https://openalex.org/I4210165204 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Big Data and Cloud Computing, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, Zhuhai 519000, China |
| authorships[0].institutions[0].id | https://openalex.org/I19820366 |
| authorships[0].institutions[0].ror | https://ror.org/034t30j35 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I19820366 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chinese Academy of Sciences |
| authorships[0].institutions[1].id | https://openalex.org/I4210165204 |
| authorships[0].institutions[1].ror | https://ror.org/05r1mzq61 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I19820366, https://openalex.org/I4210145761, https://openalex.org/I4210165204 |
| authorships[0].institutions[1].country_code | CN |
| authorships[0].institutions[1].display_name | Zhuhai Institute of Advanced Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yan Zhong |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Big Data and Cloud Computing, Zhuhai Institutes of Advanced Technology of the Chinese Academy of Sciences, Zhuhai 519000, China |
| authorships[1].author.id | https://openalex.org/A5086422507 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1848-7246 |
| authorships[1].author.display_name | Simon Fong |
| authorships[1].countries | MO |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[1].institutions[0].id | https://openalex.org/I204512498 |
| authorships[1].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[1].institutions[0].country_code | MO |
| authorships[1].institutions[0].display_name | University of Macau |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Simon Fong |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[2].author.id | https://openalex.org/A5083982090 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-3284-2494 |
| authorships[2].author.display_name | Shimin Hu |
| authorships[2].countries | MO |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I204512498 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[2].institutions[0].id | https://openalex.org/I204512498 |
| authorships[2].institutions[0].ror | https://ror.org/01r4q9n85 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I204512498 |
| authorships[2].institutions[0].country_code | MO |
| authorships[2].institutions[0].display_name | University of Macau |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Shimin Hu |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer and Information Science, University of Macau, Taipa 999078, Macau |
| authorships[3].author.id | https://openalex.org/A5015158455 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-9814-6029 |
| authorships[3].author.display_name | Raymond K. Wong |
| authorships[3].countries | AU |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I31746571 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Computer Science & Engineering, University of New South Wales, Sydney 2052, Australia |
| authorships[3].institutions[0].id | https://openalex.org/I31746571 |
| authorships[3].institutions[0].ror | https://ror.org/03r8z3t63 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I31746571 |
| authorships[3].institutions[0].country_code | AU |
| authorships[3].institutions[0].display_name | UNSW Sydney |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Raymond Wong |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Computer Science & Engineering, University of New South Wales, Sydney 2052, Australia |
| authorships[4].author.id | https://openalex.org/A5007440245 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6876-1795 |
| authorships[4].author.display_name | Weiwei Lin |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I90610280 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| authorships[4].institutions[0].id | https://openalex.org/I90610280 |
| authorships[4].institutions[0].ror | https://ror.org/0530pts50 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I90610280 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | South China University of Technology |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Weiwei Lin |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Sensor Data Pre-Processing Methodology for the Internet of Things Using Anomaly Detection and Transfer-By-Subspace-Similarity Transformation |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11512 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9952999949455261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Anomaly Detection Techniques and Applications |
| related_works | https://openalex.org/W2931688134, https://openalex.org/W2377919138, https://openalex.org/W2378857091, https://openalex.org/W4256502920, https://openalex.org/W3190734578, https://openalex.org/W1595351371, https://openalex.org/W91065195, https://openalex.org/W3191523773, https://openalex.org/W2964556660, https://openalex.org/W4386427058 |
| cited_by_count | 15 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 3 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 2 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 2 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 3 |
| locations_count | 5 |
| best_oa_location.id | doi:10.3390/s19204536 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S101949793 |
| best_oa_location.source.issn | 1424-8220 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 1424-8220 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Sensors |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Sensors |
| best_oa_location.landing_page_url | https://doi.org/10.3390/s19204536 |
| primary_location.id | doi:10.3390/s19204536 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S101949793 |
| primary_location.source.issn | 1424-8220 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 1424-8220 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Sensors |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/1424-8220/19/20/4536/pdf?version=1571665621 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Sensors |
| primary_location.landing_page_url | https://doi.org/10.3390/s19204536 |
| publication_date | 2019-10-18 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2015313713, https://openalex.org/W2547859479, https://openalex.org/W1548644355, https://openalex.org/W2104619880, https://openalex.org/W2539081363, https://openalex.org/W2789791180, https://openalex.org/W2485672898, https://openalex.org/W2525485597, https://openalex.org/W2808295648, https://openalex.org/W2295124130, https://openalex.org/W2978631110, https://openalex.org/W2105103777, https://openalex.org/W2119046642, https://openalex.org/W1972012147, https://openalex.org/W2126680797, https://openalex.org/W2008791363, https://openalex.org/W2186597707, https://openalex.org/W3150061209, https://openalex.org/W6675896010, https://openalex.org/W2127218421, https://openalex.org/W1992419399, https://openalex.org/W2153233077, https://openalex.org/W2125283600, https://openalex.org/W2035549557, https://openalex.org/W1550206324, https://openalex.org/W6636859864, https://openalex.org/W2008056655, https://openalex.org/W2921835507, https://openalex.org/W2620822707, https://openalex.org/W2296719434, https://openalex.org/W2103869494, https://openalex.org/W2604257347, https://openalex.org/W1625504505 |
| referenced_works_count | 33 |
| abstract_inverted_index.a | 61, 122, 181 |
| abstract_inverted_index.An | 188 |
| abstract_inverted_index.To | 111 |
| abstract_inverted_index.at | 33, 63 |
| abstract_inverted_index.be | 136 |
| abstract_inverted_index.by | 177, 196 |
| abstract_inverted_index.in | 12, 60, 102, 108, 163, 167 |
| abstract_inverted_index.is | 94, 131, 151, 175, 194 |
| abstract_inverted_index.of | 2, 48, 66, 90, 98, 115, 157, 183 |
| abstract_inverted_index.on | 127 |
| abstract_inverted_index.to | 81 |
| abstract_inverted_index.IoT | 21, 120 |
| abstract_inverted_index.Our | 133 |
| abstract_inverted_index.The | 0, 148, 172 |
| abstract_inverted_index.and | 5, 15, 22, 54, 76, 104, 144 |
| abstract_inverted_index.are | 7, 31, 45, 52, 161 |
| abstract_inverted_index.can | 135 |
| abstract_inverted_index.for | 36, 56, 153 |
| abstract_inverted_index.new | 123 |
| abstract_inverted_index.not | 79 |
| abstract_inverted_index.the | 27, 39, 49, 67, 88, 91, 99, 105, 109, 113, 119, 191, 198 |
| abstract_inverted_index.Most | 65 |
| abstract_inverted_index.ago, | 75 |
| abstract_inverted_index.data | 28, 44, 50, 85, 116, 141, 159, 185 |
| abstract_inverted_index.fact | 40 |
| abstract_inverted_index.from | 118 |
| abstract_inverted_index.many | 168 |
| abstract_inverted_index.most | 47 |
| abstract_inverted_index.over | 190 |
| abstract_inverted_index.park | 62 |
| abstract_inverted_index.poor | 96 |
| abstract_inverted_index.rate | 193 |
| abstract_inverted_index.such | 42, 83 |
| abstract_inverted_index.that | 19, 30, 41, 160, 165 |
| abstract_inverted_index.they | 77 |
| abstract_inverted_index.well | 137 |
| abstract_inverted_index.were | 71, 78 |
| abstract_inverted_index.with | 139, 180 |
| abstract_inverted_index.(IoT) | 4 |
| abstract_inverted_index.based | 126 |
| abstract_inverted_index.data, | 121 |
| abstract_inverted_index.data. | 110 |
| abstract_inverted_index.exist | 166 |
| abstract_inverted_index.feeds | 29 |
| abstract_inverted_index.human | 58 |
| abstract_inverted_index.kinds | 156 |
| abstract_inverted_index.large | 14 |
| abstract_inverted_index.model | 93 |
| abstract_inverted_index.often | 24, 95 |
| abstract_inverted_index.shown | 195 |
| abstract_inverted_index.small | 100 |
| abstract_inverted_index.using | 197 |
| abstract_inverted_index.Hence, | 87 |
| abstract_inverted_index.Things | 3 |
| abstract_inverted_index.handle | 82 |
| abstract_inverted_index.method | 134, 150 |
| abstract_inverted_index.mining | 26, 117, 142, 186 |
| abstract_inverted_index.nature | 164 |
| abstract_inverted_index.night. | 64 |
| abstract_inverted_index.sensor | 43, 84, 158 |
| abstract_inverted_index.Despite | 38 |
| abstract_inverted_index.ambient | 16, 169 |
| abstract_inverted_index.anomaly | 145 |
| abstract_inverted_index.because | 97 |
| abstract_inverted_index.decades | 74 |
| abstract_inverted_index.embrace | 20 |
| abstract_inverted_index.improve | 112 |
| abstract_inverted_index.learned | 92 |
| abstract_inverted_index.method. | 200 |
| abstract_inverted_index.models. | 187 |
| abstract_inverted_index.quality | 114 |
| abstract_inverted_index.require | 25 |
| abstract_inverted_index.sensing | 170 |
| abstract_inverted_index.sensors | 6, 23 |
| abstract_inverted_index.similar | 155 |
| abstract_inverted_index.traffic | 59 |
| abstract_inverted_index.Internet | 1 |
| abstract_inverted_index.becoming | 8 |
| abstract_inverted_index.contents | 51 |
| abstract_inverted_index.designed | 80 |
| abstract_inverted_index.example, | 57 |
| abstract_inverted_index.flexible | 152 |
| abstract_inverted_index.frequent | 34 |
| abstract_inverted_index.handling | 154 |
| abstract_inverted_index.massive, | 46 |
| abstract_inverted_index.methods. | 147 |
| abstract_inverted_index.patterns | 107 |
| abstract_inverted_index.popular, | 10 |
| abstract_inverted_index.proposed | 173, 199 |
| abstract_inverted_index.sporadic | 106, 162 |
| abstract_inverted_index.subspace | 128 |
| abstract_inverted_index.classical | 184 |
| abstract_inverted_index.collected | 32 |
| abstract_inverted_index.detection | 130, 146 |
| abstract_inverted_index.evaluated | 176 |
| abstract_inverted_index.extensive | 178 |
| abstract_inverted_index.identical | 53 |
| abstract_inverted_index.intervals | 35 |
| abstract_inverted_index.precision | 192 |
| abstract_inverted_index.proposed. | 132 |
| abstract_inverted_index.algorithms | 70, 143 |
| abstract_inverted_index.collection | 182 |
| abstract_inverted_index.especially | 11 |
| abstract_inverted_index.experiment | 179 |
| abstract_inverted_index.formulated | 73 |
| abstract_inverted_index.integrated | 138 |
| abstract_inverted_index.monitoring | 13 |
| abstract_inverted_index.originally | 72 |
| abstract_inverted_index.similarity | 129 |
| abstract_inverted_index.granularity | 101 |
| abstract_inverted_index.improvement | 189 |
| abstract_inverted_index.methodology | 125, 174 |
| abstract_inverted_index.performance | 89 |
| abstract_inverted_index.repetitive; | 55 |
| abstract_inverted_index.traditional | 68, 140 |
| abstract_inverted_index.Applications | 18 |
| abstract_inverted_index.effectively. | 86 |
| abstract_inverted_index.increasingly | 9 |
| abstract_inverted_index.applications. | 171 |
| abstract_inverted_index.environments. | 17 |
| abstract_inverted_index.intelligence. | 37 |
| abstract_inverted_index.classification | 69, 103 |
| abstract_inverted_index.pre-processing | 124, 149 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 93 |
| corresponding_author_ids | https://openalex.org/A5086422507 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I204512498 |
| citation_normalized_percentile.value | 0.82971707 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |