A Novel Sparse Active Online Learning Framework for Fast and Accurate Streaming Anomaly Detection Over Data Streams Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.24963/ijcai.2024/305
Online Anomaly Detection (OAD) is critical for identifying rare yet important data points in large, dynamic, and complex data streams. A key challenge lies in achieving accurate and consistent detection of anomalies while maintaining computational and memory efficiency. Conventional OAD approaches, which depend on distributional deviations and static thresholds, struggle with model update delays and catastrophic forgetting, leading to missed detections and high false positive rates. To address these limitations, we propose a novel Streaming Anomaly Detection (SAD) method, grounded in a sparse active online learning framework. Our approach uniquely integrates ℓ1,2-norm sparse online learning with CUR decomposition-based active learning, enabling simultaneous fast feature selection and dynamic instance selection. The efficient CUR decomposition further supports real-time residual analysis for anomaly scoring, eliminating the need for manual threshold settings about temporal data distributions. Extensive experiments on diverse streaming datasets demonstrate SAD's superiority, achieving a 14.06% reduction in detection error rates compared to five state-of-the-art competitors.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.24963/ijcai.2024/305
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4401024394
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4401024394Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.24963/ijcai.2024/305Digital Object Identifier
- Title
-
A Novel Sparse Active Online Learning Framework for Fast and Accurate Streaming Anomaly Detection Over Data StreamsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-07-26Full publication date if available
- Authors
-
Théo Delemazure, Chris Dong, Dominik Peters, Magdalena TydrichovaList of authors in order
- Landing page
-
https://doi.org/10.24963/ijcai.2024/305Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://hal.science/hal-04727485Direct OA link when available
- Concepts
-
Social choice theory, Computer science, Mathematical economics, Ballot, Voting, Class (philosophy), Set (abstract data type), Axiom, Interval (graph theory), Ideal (ethics), Impossibility, Selection (genetic algorithm), Order (exchange), Monotonic function, Mathematics, Politics, Artificial intelligence, Law, Political science, Economics, Combinatorics, Mathematical analysis, Geometry, Finance, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4401024394 |
|---|---|
| doi | https://doi.org/10.24963/ijcai.2024/305 |
| ids.doi | https://doi.org/10.24963/ijcai.2024/305 |
| ids.openalex | https://openalex.org/W4401024394 |
| fwci | 0.0 |
| type | article |
| title | A Novel Sparse Active Online Learning Framework for Fast and Accurate Streaming Anomaly Detection Over Data Streams |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 2748 |
| biblio.first_page | 2740 |
| topics[0].id | https://openalex.org/T10991 |
| topics[0].field.id | https://openalex.org/fields/20 |
| topics[0].field.display_name | Economics, Econometrics and Finance |
| topics[0].score | 0.995199978351593 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2002 |
| topics[0].subfield.display_name | Economics and Econometrics |
| topics[0].display_name | Game Theory and Voting Systems |
| topics[1].id | https://openalex.org/T11182 |
| topics[1].field.id | https://openalex.org/fields/18 |
| topics[1].field.display_name | Decision Sciences |
| topics[1].score | 0.9150999784469604 |
| topics[1].domain.id | https://openalex.org/domains/2 |
| topics[1].domain.display_name | Social Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1803 |
| topics[1].subfield.display_name | Management Science and Operations Research |
| topics[1].display_name | Auction Theory and Applications |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C189352744 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6352310180664062 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1971461 |
| concepts[0].display_name | Social choice theory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5489476323127747 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C144237770 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5337672233581543 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q747534 |
| concepts[2].display_name | Mathematical economics |
| concepts[3].id | https://openalex.org/C2777094542 |
| concepts[3].level | 4 |
| concepts[3].score | 0.5168312191963196 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q905151 |
| concepts[3].display_name | Ballot |
| concepts[4].id | https://openalex.org/C520049643 |
| concepts[4].level | 3 |
| concepts[4].score | 0.5143762230873108 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q189760 |
| concepts[4].display_name | Voting |
| concepts[5].id | https://openalex.org/C2777212361 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5122882127761841 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q5127848 |
| concepts[5].display_name | Class (philosophy) |
| concepts[6].id | https://openalex.org/C177264268 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4993882179260254 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[6].display_name | Set (abstract data type) |
| concepts[7].id | https://openalex.org/C167729594 |
| concepts[7].level | 2 |
| concepts[7].score | 0.49341121315956116 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17736 |
| concepts[7].display_name | Axiom |
| concepts[8].id | https://openalex.org/C2778067643 |
| concepts[8].level | 2 |
| concepts[8].score | 0.49300119280815125 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q166507 |
| concepts[8].display_name | Interval (graph theory) |
| concepts[9].id | https://openalex.org/C2776639384 |
| concepts[9].level | 2 |
| concepts[9].score | 0.48370033502578735 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q840396 |
| concepts[9].display_name | Ideal (ethics) |
| concepts[10].id | https://openalex.org/C2776261394 |
| concepts[10].level | 2 |
| concepts[10].score | 0.45781436562538147 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q315562 |
| concepts[10].display_name | Impossibility |
| concepts[11].id | https://openalex.org/C81917197 |
| concepts[11].level | 2 |
| concepts[11].score | 0.44515499472618103 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q628760 |
| concepts[11].display_name | Selection (genetic algorithm) |
| concepts[12].id | https://openalex.org/C182306322 |
| concepts[12].level | 2 |
| concepts[12].score | 0.4440290927886963 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q1779371 |
| concepts[12].display_name | Order (exchange) |
| concepts[13].id | https://openalex.org/C72169020 |
| concepts[13].level | 2 |
| concepts[13].score | 0.4345095753669739 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q194404 |
| concepts[13].display_name | Monotonic function |
| concepts[14].id | https://openalex.org/C33923547 |
| concepts[14].level | 0 |
| concepts[14].score | 0.36302390694618225 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[14].display_name | Mathematics |
| concepts[15].id | https://openalex.org/C94625758 |
| concepts[15].level | 2 |
| concepts[15].score | 0.21815982460975647 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[15].display_name | Politics |
| concepts[16].id | https://openalex.org/C154945302 |
| concepts[16].level | 1 |
| concepts[16].score | 0.20903494954109192 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[16].display_name | Artificial intelligence |
| concepts[17].id | https://openalex.org/C199539241 |
| concepts[17].level | 1 |
| concepts[17].score | 0.20651373267173767 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[17].display_name | Law |
| concepts[18].id | https://openalex.org/C17744445 |
| concepts[18].level | 0 |
| concepts[18].score | 0.1948114037513733 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[18].display_name | Political science |
| concepts[19].id | https://openalex.org/C162324750 |
| concepts[19].level | 0 |
| concepts[19].score | 0.15128695964813232 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[19].display_name | Economics |
| concepts[20].id | https://openalex.org/C114614502 |
| concepts[20].level | 1 |
| concepts[20].score | 0.13984763622283936 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[20].display_name | Combinatorics |
| concepts[21].id | https://openalex.org/C134306372 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7754 |
| concepts[21].display_name | Mathematical analysis |
| concepts[22].id | https://openalex.org/C2524010 |
| concepts[22].level | 1 |
| concepts[22].score | 0.0 |
| concepts[22].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[22].display_name | Geometry |
| concepts[23].id | https://openalex.org/C10138342 |
| concepts[23].level | 1 |
| concepts[23].score | 0.0 |
| concepts[23].wikidata | https://www.wikidata.org/wiki/Q43015 |
| concepts[23].display_name | Finance |
| concepts[24].id | https://openalex.org/C199360897 |
| concepts[24].level | 1 |
| concepts[24].score | 0.0 |
| concepts[24].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[24].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/social-choice-theory |
| keywords[0].score | 0.6352310180664062 |
| keywords[0].display_name | Social choice theory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5489476323127747 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/mathematical-economics |
| keywords[2].score | 0.5337672233581543 |
| keywords[2].display_name | Mathematical economics |
| keywords[3].id | https://openalex.org/keywords/ballot |
| keywords[3].score | 0.5168312191963196 |
| keywords[3].display_name | Ballot |
| keywords[4].id | https://openalex.org/keywords/voting |
| keywords[4].score | 0.5143762230873108 |
| keywords[4].display_name | Voting |
| keywords[5].id | https://openalex.org/keywords/class |
| keywords[5].score | 0.5122882127761841 |
| keywords[5].display_name | Class (philosophy) |
| keywords[6].id | https://openalex.org/keywords/set |
| keywords[6].score | 0.4993882179260254 |
| keywords[6].display_name | Set (abstract data type) |
| keywords[7].id | https://openalex.org/keywords/axiom |
| keywords[7].score | 0.49341121315956116 |
| keywords[7].display_name | Axiom |
| keywords[8].id | https://openalex.org/keywords/interval |
| keywords[8].score | 0.49300119280815125 |
| keywords[8].display_name | Interval (graph theory) |
| keywords[9].id | https://openalex.org/keywords/ideal |
| keywords[9].score | 0.48370033502578735 |
| keywords[9].display_name | Ideal (ethics) |
| keywords[10].id | https://openalex.org/keywords/impossibility |
| keywords[10].score | 0.45781436562538147 |
| keywords[10].display_name | Impossibility |
| keywords[11].id | https://openalex.org/keywords/selection |
| keywords[11].score | 0.44515499472618103 |
| keywords[11].display_name | Selection (genetic algorithm) |
| keywords[12].id | https://openalex.org/keywords/order |
| keywords[12].score | 0.4440290927886963 |
| keywords[12].display_name | Order (exchange) |
| keywords[13].id | https://openalex.org/keywords/monotonic-function |
| keywords[13].score | 0.4345095753669739 |
| keywords[13].display_name | Monotonic function |
| keywords[14].id | https://openalex.org/keywords/mathematics |
| keywords[14].score | 0.36302390694618225 |
| keywords[14].display_name | Mathematics |
| keywords[15].id | https://openalex.org/keywords/politics |
| keywords[15].score | 0.21815982460975647 |
| keywords[15].display_name | Politics |
| keywords[16].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[16].score | 0.20903494954109192 |
| keywords[16].display_name | Artificial intelligence |
| keywords[17].id | https://openalex.org/keywords/law |
| keywords[17].score | 0.20651373267173767 |
| keywords[17].display_name | Law |
| keywords[18].id | https://openalex.org/keywords/political-science |
| keywords[18].score | 0.1948114037513733 |
| keywords[18].display_name | Political science |
| keywords[19].id | https://openalex.org/keywords/economics |
| keywords[19].score | 0.15128695964813232 |
| keywords[19].display_name | Economics |
| keywords[20].id | https://openalex.org/keywords/combinatorics |
| keywords[20].score | 0.13984763622283936 |
| keywords[20].display_name | Combinatorics |
| language | en |
| locations[0].id | doi:10.24963/ijcai.2024/305 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence |
| locations[0].landing_page_url | https://doi.org/10.24963/ijcai.2024/305 |
| locations[1].id | pmh:oai:HAL:hal-04727485v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | other-oa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference papers |
| locations[1].license_id | https://openalex.org/licenses/other-oa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24), Aug 2023, Jeju, South Korea. pp.2757-2765, ⟨10.24963/ijcai.2024/305⟩ |
| locations[1].landing_page_url | https://hal.science/hal-04727485 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5051288353 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-2045-6403 |
| authorships[0].author.display_name | Théo Delemazure |
| authorships[0].countries | FR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I56435720 |
| authorships[0].affiliations[0].raw_affiliation_string | CNRS, Lamsade, Université Paris Dauphine - PSL |
| authorships[0].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[0].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[0].institutions[0].type | government |
| authorships[0].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[0].institutions[0].country_code | FR |
| authorships[0].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[0].institutions[1].id | https://openalex.org/I56435720 |
| authorships[0].institutions[1].ror | https://ror.org/052bz7812 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I2746051580, https://openalex.org/I56435720 |
| authorships[0].institutions[1].country_code | FR |
| authorships[0].institutions[1].display_name | Université Paris Dauphine-PSL |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Théo Delemazure |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | CNRS, Lamsade, Université Paris Dauphine - PSL |
| authorships[1].author.id | https://openalex.org/A5113306712 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Chris Dong |
| authorships[1].countries | DE |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I62916508 |
| authorships[1].affiliations[0].raw_affiliation_string | Technical University of Munich |
| authorships[1].institutions[0].id | https://openalex.org/I62916508 |
| authorships[1].institutions[0].ror | https://ror.org/02kkvpp62 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I62916508 |
| authorships[1].institutions[0].country_code | DE |
| authorships[1].institutions[0].display_name | Technical University of Munich |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Chris Dong |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Technical University of Munich |
| authorships[2].author.id | https://openalex.org/A5015162351 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9418-7571 |
| authorships[2].author.display_name | Dominik Peters |
| authorships[2].countries | FR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I1294671590, https://openalex.org/I56435720 |
| authorships[2].affiliations[0].raw_affiliation_string | CNRS, Lamsade, Université Paris Dauphine - PSL |
| authorships[2].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[2].institutions[0].country_code | FR |
| authorships[2].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[2].institutions[1].id | https://openalex.org/I56435720 |
| authorships[2].institutions[1].ror | https://ror.org/052bz7812 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I2746051580, https://openalex.org/I56435720 |
| authorships[2].institutions[1].country_code | FR |
| authorships[2].institutions[1].display_name | Université Paris Dauphine-PSL |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Dominik Peters |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | CNRS, Lamsade, Université Paris Dauphine - PSL |
| authorships[3].author.id | https://openalex.org/A5105103109 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Magdalena Tydrichova |
| authorships[3].countries | FR |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I277688954, https://openalex.org/I4210107720 |
| authorships[3].affiliations[0].raw_affiliation_string | CentraleSupélec, Paris Saclay University |
| authorships[3].institutions[0].id | https://openalex.org/I4210107720 |
| authorships[3].institutions[0].ror | https://ror.org/019tcpt25 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I277688954, https://openalex.org/I4210107720 |
| authorships[3].institutions[0].country_code | FR |
| authorships[3].institutions[0].display_name | CentraleSupélec |
| authorships[3].institutions[1].id | https://openalex.org/I277688954 |
| authorships[3].institutions[1].ror | https://ror.org/03xjwb503 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I277688954 |
| authorships[3].institutions[1].country_code | FR |
| authorships[3].institutions[1].display_name | Université Paris-Saclay |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Magdalena Tydrichova |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | CentraleSupélec, Paris Saclay University |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://hal.science/hal-04727485 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Sparse Active Online Learning Framework for Fast and Accurate Streaming Anomaly Detection Over Data Streams |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10991 |
| primary_topic.field.id | https://openalex.org/fields/20 |
| primary_topic.field.display_name | Economics, Econometrics and Finance |
| primary_topic.score | 0.995199978351593 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2002 |
| primary_topic.subfield.display_name | Economics and Econometrics |
| primary_topic.display_name | Game Theory and Voting Systems |
| related_works | https://openalex.org/W3121148683, https://openalex.org/W977975355, https://openalex.org/W4388169968, https://openalex.org/W4205838527, https://openalex.org/W2989964051, https://openalex.org/W2113742563, https://openalex.org/W2553526764, https://openalex.org/W2018029507, https://openalex.org/W2280017295, https://openalex.org/W2181631324 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:HAL:hal-04727485v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402512 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| best_oa_location.source.host_organization | https://openalex.org/I1294671590 |
| best_oa_location.source.host_organization_name | Centre National de la Recherche Scientifique |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1294671590 |
| best_oa_location.license | other-oa |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Conference papers |
| best_oa_location.license_id | https://openalex.org/licenses/other-oa |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24), Aug 2023, Jeju, South Korea. pp.2757-2765, ⟨10.24963/ijcai.2024/305⟩ |
| best_oa_location.landing_page_url | https://hal.science/hal-04727485 |
| primary_location.id | doi:10.24963/ijcai.2024/305 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the Thirty-ThirdInternational Joint Conference on Artificial Intelligence |
| primary_location.landing_page_url | https://doi.org/10.24963/ijcai.2024/305 |
| publication_date | 2024-07-26 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 20 |
| abstract_inverted_index.a | 72, 81, 142 |
| abstract_inverted_index.To | 66 |
| abstract_inverted_index.in | 13, 24, 80, 145 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.of | 30 |
| abstract_inverted_index.on | 43, 134 |
| abstract_inverted_index.to | 58, 150 |
| abstract_inverted_index.we | 70 |
| abstract_inverted_index.CUR | 96, 111 |
| abstract_inverted_index.OAD | 39 |
| abstract_inverted_index.Our | 87 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 16, 27, 35, 46, 54, 61, 105 |
| abstract_inverted_index.for | 6, 118, 124 |
| abstract_inverted_index.key | 21 |
| abstract_inverted_index.the | 122 |
| abstract_inverted_index.yet | 9 |
| abstract_inverted_index.data | 11, 18, 130 |
| abstract_inverted_index.fast | 102 |
| abstract_inverted_index.five | 151 |
| abstract_inverted_index.high | 62 |
| abstract_inverted_index.lies | 23 |
| abstract_inverted_index.need | 123 |
| abstract_inverted_index.rare | 8 |
| abstract_inverted_index.with | 50, 95 |
| abstract_inverted_index.(OAD) | 3 |
| abstract_inverted_index.(SAD) | 77 |
| abstract_inverted_index.SAD's | 139 |
| abstract_inverted_index.about | 128 |
| abstract_inverted_index.error | 147 |
| abstract_inverted_index.false | 63 |
| abstract_inverted_index.model | 51 |
| abstract_inverted_index.novel | 73 |
| abstract_inverted_index.rates | 148 |
| abstract_inverted_index.these | 68 |
| abstract_inverted_index.which | 41 |
| abstract_inverted_index.while | 32 |
| abstract_inverted_index.14.06% | 143 |
| abstract_inverted_index.Online | 0 |
| abstract_inverted_index.active | 83, 98 |
| abstract_inverted_index.delays | 53 |
| abstract_inverted_index.depend | 42 |
| abstract_inverted_index.large, | 14 |
| abstract_inverted_index.manual | 125 |
| abstract_inverted_index.memory | 36 |
| abstract_inverted_index.missed | 59 |
| abstract_inverted_index.online | 84, 93 |
| abstract_inverted_index.points | 12 |
| abstract_inverted_index.rates. | 65 |
| abstract_inverted_index.sparse | 82, 92 |
| abstract_inverted_index.static | 47 |
| abstract_inverted_index.update | 52 |
| abstract_inverted_index.Anomaly | 1, 75 |
| abstract_inverted_index.address | 67 |
| abstract_inverted_index.anomaly | 119 |
| abstract_inverted_index.complex | 17 |
| abstract_inverted_index.diverse | 135 |
| abstract_inverted_index.dynamic | 106 |
| abstract_inverted_index.feature | 103 |
| abstract_inverted_index.further | 113 |
| abstract_inverted_index.leading | 57 |
| abstract_inverted_index.method, | 78 |
| abstract_inverted_index.propose | 71 |
| abstract_inverted_index.accurate | 26 |
| abstract_inverted_index.analysis | 117 |
| abstract_inverted_index.approach | 88 |
| abstract_inverted_index.compared | 149 |
| abstract_inverted_index.critical | 5 |
| abstract_inverted_index.datasets | 137 |
| abstract_inverted_index.dynamic, | 15 |
| abstract_inverted_index.enabling | 100 |
| abstract_inverted_index.grounded | 79 |
| abstract_inverted_index.instance | 107 |
| abstract_inverted_index.learning | 85, 94 |
| abstract_inverted_index.positive | 64 |
| abstract_inverted_index.residual | 116 |
| abstract_inverted_index.scoring, | 120 |
| abstract_inverted_index.settings | 127 |
| abstract_inverted_index.streams. | 19 |
| abstract_inverted_index.struggle | 49 |
| abstract_inverted_index.supports | 114 |
| abstract_inverted_index.temporal | 129 |
| abstract_inverted_index.uniquely | 89 |
| abstract_inverted_index.Detection | 2, 76 |
| abstract_inverted_index.Extensive | 132 |
| abstract_inverted_index.Streaming | 74 |
| abstract_inverted_index.achieving | 25, 141 |
| abstract_inverted_index.anomalies | 31 |
| abstract_inverted_index.challenge | 22 |
| abstract_inverted_index.detection | 29, 146 |
| abstract_inverted_index.efficient | 110 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.learning, | 99 |
| abstract_inverted_index.real-time | 115 |
| abstract_inverted_index.reduction | 144 |
| abstract_inverted_index.selection | 104 |
| abstract_inverted_index.streaming | 136 |
| abstract_inverted_index.threshold | 126 |
| abstract_inverted_index.consistent | 28 |
| abstract_inverted_index.detections | 60 |
| abstract_inverted_index.deviations | 45 |
| abstract_inverted_index.framework. | 86 |
| abstract_inverted_index.integrates | 90 |
| abstract_inverted_index.selection. | 108 |
| abstract_inverted_index.approaches, | 40 |
| abstract_inverted_index.demonstrate | 138 |
| abstract_inverted_index.efficiency. | 37 |
| abstract_inverted_index.eliminating | 121 |
| abstract_inverted_index.experiments | 133 |
| abstract_inverted_index.forgetting, | 56 |
| abstract_inverted_index.identifying | 7 |
| abstract_inverted_index.maintaining | 33 |
| abstract_inverted_index.thresholds, | 48 |
| abstract_inverted_index.ℓ1,2-norm | 91 |
| abstract_inverted_index.Conventional | 38 |
| abstract_inverted_index.catastrophic | 55 |
| abstract_inverted_index.competitors. | 153 |
| abstract_inverted_index.limitations, | 69 |
| abstract_inverted_index.simultaneous | 101 |
| abstract_inverted_index.superiority, | 140 |
| abstract_inverted_index.computational | 34 |
| abstract_inverted_index.decomposition | 112 |
| abstract_inverted_index.distributional | 44 |
| abstract_inverted_index.distributions. | 131 |
| abstract_inverted_index.state-of-the-art | 152 |
| abstract_inverted_index.decomposition-based | 97 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 4 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.5199999809265137 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| sustainable_development_goals[1].id | https://metadata.un.org/sdg/10 |
| sustainable_development_goals[1].score | 0.41999998688697815 |
| sustainable_development_goals[1].display_name | Reduced inequalities |
| citation_normalized_percentile.value | 0.12728888 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |