A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression Recognition Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1587/transinf.2021edl8062
In this letter, we propose a novel transferable sparse regression (TSR) method, for cross-database facial expression recognition (FER). In TSR, we firstly present a novel regression function to regress the data into a latent representation space instead of a strict binary label space. To further alleviate the influence of outliers and overfitting, we impose a row sparsity constraint on the regression term. And a pairwise relation term is introduced to guide the feature transfer learning. Secondly, we design a global graph to transfer knowledge, which can well preserve the cross-database manifold structure. Moreover, we introduce a low-rank constraint on the graph regularization term to uncover additional structural information. Finally, several experiments are conducted on three popular facial expression databases, and the results validate that the proposed TSR method is superior to other non-deep and deep transfer learning methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1587/transinf.2021edl8062
- https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdf
- OA Status
- diamond
- References
- 16
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4205661186
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4205661186Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1587/transinf.2021edl8062Digital Object Identifier
- Title
-
A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression RecognitionWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-12-31Full publication date if available
- Authors
-
Wenjing Zhang, Peng Song, Wenming ZhengList of authors in order
- Landing page
-
https://doi.org/10.1587/transinf.2021edl8062Publisher landing page
- PDF URL
-
https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
diamondOpen access status per OpenAlex
- OA URL
-
https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdfDirect OA link when available
- Concepts
-
Computer science, Overfitting, Artificial intelligence, Pattern recognition (psychology), Pairwise comparison, Sparse approximation, Constraint (computer-aided design), Feature learning, Outlier, Machine learning, Mathematics, Artificial neural network, GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
16Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4205661186 |
|---|---|
| doi | https://doi.org/10.1587/transinf.2021edl8062 |
| ids.doi | https://doi.org/10.1587/transinf.2021edl8062 |
| ids.openalex | https://openalex.org/W4205661186 |
| fwci | 0.0 |
| type | article |
| title | A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression Recognition |
| biblio.issue | 1 |
| biblio.volume | E105.D |
| biblio.last_page | 188 |
| biblio.first_page | 184 |
| topics[0].id | https://openalex.org/T10057 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996999979019165 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Face and Expression Recognition |
| topics[1].id | https://openalex.org/T12676 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9954000115394592 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Machine Learning and ELM |
| topics[2].id | https://openalex.org/T10500 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9926000237464905 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2206 |
| topics[2].subfield.display_name | Computational Mechanics |
| topics[2].display_name | Sparse and Compressive Sensing Techniques |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7698646783828735 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C22019652 |
| concepts[1].level | 3 |
| concepts[1].score | 0.7262017130851746 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q331309 |
| concepts[1].display_name | Overfitting |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6707736253738403 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C153180895 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6409734487533569 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[3].display_name | Pattern recognition (psychology) |
| concepts[4].id | https://openalex.org/C184898388 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5171160697937012 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1435712 |
| concepts[4].display_name | Pairwise comparison |
| concepts[5].id | https://openalex.org/C124066611 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4940374493598938 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q28684319 |
| concepts[5].display_name | Sparse approximation |
| concepts[6].id | https://openalex.org/C2776036281 |
| concepts[6].level | 2 |
| concepts[6].score | 0.48511016368865967 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q48769818 |
| concepts[6].display_name | Constraint (computer-aided design) |
| concepts[7].id | https://openalex.org/C59404180 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4194445013999939 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q17013334 |
| concepts[7].display_name | Feature learning |
| concepts[8].id | https://openalex.org/C79337645 |
| concepts[8].level | 2 |
| concepts[8].score | 0.4137468636035919 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q779824 |
| concepts[8].display_name | Outlier |
| concepts[9].id | https://openalex.org/C119857082 |
| concepts[9].level | 1 |
| concepts[9].score | 0.3531898260116577 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[9].display_name | Machine learning |
| concepts[10].id | https://openalex.org/C33923547 |
| concepts[10].level | 0 |
| concepts[10].score | 0.14771011471748352 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[10].display_name | Mathematics |
| concepts[11].id | https://openalex.org/C50644808 |
| concepts[11].level | 2 |
| concepts[11].score | 0.1390540897846222 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[11].display_name | Artificial neural network |
| concepts[12].id | https://openalex.org/C2524010 |
| concepts[12].level | 1 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[12].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7698646783828735 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/overfitting |
| keywords[1].score | 0.7262017130851746 |
| keywords[1].display_name | Overfitting |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6707736253738403 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/pattern-recognition |
| keywords[3].score | 0.6409734487533569 |
| keywords[3].display_name | Pattern recognition (psychology) |
| keywords[4].id | https://openalex.org/keywords/pairwise-comparison |
| keywords[4].score | 0.5171160697937012 |
| keywords[4].display_name | Pairwise comparison |
| keywords[5].id | https://openalex.org/keywords/sparse-approximation |
| keywords[5].score | 0.4940374493598938 |
| keywords[5].display_name | Sparse approximation |
| keywords[6].id | https://openalex.org/keywords/constraint |
| keywords[6].score | 0.48511016368865967 |
| keywords[6].display_name | Constraint (computer-aided design) |
| keywords[7].id | https://openalex.org/keywords/feature-learning |
| keywords[7].score | 0.4194445013999939 |
| keywords[7].display_name | Feature learning |
| keywords[8].id | https://openalex.org/keywords/outlier |
| keywords[8].score | 0.4137468636035919 |
| keywords[8].display_name | Outlier |
| keywords[9].id | https://openalex.org/keywords/machine-learning |
| keywords[9].score | 0.3531898260116577 |
| keywords[9].display_name | Machine learning |
| keywords[10].id | https://openalex.org/keywords/mathematics |
| keywords[10].score | 0.14771011471748352 |
| keywords[10].display_name | Mathematics |
| keywords[11].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[11].score | 0.1390540897846222 |
| keywords[11].display_name | Artificial neural network |
| language | en |
| locations[0].id | doi:10.1587/transinf.2021edl8062 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2486202937 |
| locations[0].source.issn | 0916-8532, 1745-1361 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 0916-8532 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | IEICE Transactions on Information and Systems |
| locations[0].source.host_organization | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4320800604 |
| locations[0].source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEICE Transactions on Information and Systems |
| locations[0].landing_page_url | https://doi.org/10.1587/transinf.2021edl8062 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5100407198 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-3066-7186 |
| authorships[0].author.display_name | Wenjing Zhang |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[0].institutions[0].id | https://openalex.org/I18452120 |
| authorships[0].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Yantai University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wenjing ZHANG |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[1].author.id | https://openalex.org/A5009279384 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-6567-663X |
| authorships[1].author.display_name | Peng Song |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I18452120 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Computer and Control Engineering, Yantai University |
| authorships[1].institutions[0].id | https://openalex.org/I18452120 |
| authorships[1].institutions[0].ror | https://ror.org/01rp41m56 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I18452120 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Yantai University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Peng SONG |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Computer and Control Engineering, Yantai University |
| authorships[2].author.id | https://openalex.org/A5029771864 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-7764-5179 |
| authorships[2].author.display_name | Wenming Zheng |
| authorships[2].countries | CL |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I4210100356 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Child Development and Learning Science, Ministry of Education (Southeast University), and Research Center for Learning Science, Southeast University |
| authorships[2].institutions[0].id | https://openalex.org/I4210100356 |
| authorships[2].institutions[0].ror | https://ror.org/018f7hf93 |
| authorships[2].institutions[0].type | government |
| authorships[2].institutions[0].lineage | https://openalex.org/I4210100356 |
| authorships[2].institutions[0].country_code | CL |
| authorships[2].institutions[0].display_name | Ministry of Education |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wenming ZHENG |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Key Laboratory of Child Development and Learning Science, Ministry of Education (Southeast University), and Research Center for Learning Science, Southeast University |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdf |
| open_access.oa_status | diamond |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Novel Transferable Sparse Regression Method for Cross-Database Facial Expression Recognition |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10057 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996999979019165 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Face and Expression Recognition |
| related_works | https://openalex.org/W2989932438, https://openalex.org/W3099765033, https://openalex.org/W4210794429, https://openalex.org/W2767651786, https://openalex.org/W4283732135, https://openalex.org/W1996541855, https://openalex.org/W2940336242, https://openalex.org/W2742991909, https://openalex.org/W4313159793, https://openalex.org/W2885904013 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1587/transinf.2021edl8062 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2486202937 |
| best_oa_location.source.issn | 0916-8532, 1745-1361 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 0916-8532 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | IEICE Transactions on Information and Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEICE Transactions on Information and Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1587/transinf.2021edl8062 |
| primary_location.id | doi:10.1587/transinf.2021edl8062 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2486202937 |
| primary_location.source.issn | 0916-8532, 1745-1361 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 0916-8532 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | IEICE Transactions on Information and Systems |
| primary_location.source.host_organization | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_name | Institute of Electronics, Information and Communication Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4320800604 |
| primary_location.source.host_organization_lineage_names | Institute of Electronics, Information and Communication Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://www.jstage.jst.go.jp/article/transinf/E105.D/1/E105.D_2021EDL8062/_pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEICE Transactions on Information and Systems |
| primary_location.landing_page_url | https://doi.org/10.1587/transinf.2021edl8062 |
| publication_date | 2021-12-31 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2299853448, https://openalex.org/W2786296948, https://openalex.org/W3037439017, https://openalex.org/W2240559667, https://openalex.org/W2992062578, https://openalex.org/W3090911974, https://openalex.org/W2164278908, https://openalex.org/W2103972604, https://openalex.org/W2089468765, https://openalex.org/W2115403315, https://openalex.org/W2057266281, https://openalex.org/W2616287544, https://openalex.org/W2803106019, https://openalex.org/W1565327149, https://openalex.org/W2889945482, https://openalex.org/W2194775991 |
| referenced_works_count | 16 |
| abstract_inverted_index.a | 5, 23, 32, 38, 54, 63, 78, 95 |
| abstract_inverted_index.In | 0, 18 |
| abstract_inverted_index.To | 43 |
| abstract_inverted_index.is | 67, 128 |
| abstract_inverted_index.of | 37, 48 |
| abstract_inverted_index.on | 58, 98, 113 |
| abstract_inverted_index.to | 27, 69, 81, 103, 130 |
| abstract_inverted_index.we | 3, 20, 52, 76, 93 |
| abstract_inverted_index.And | 62 |
| abstract_inverted_index.TSR | 126 |
| abstract_inverted_index.and | 50, 119, 133 |
| abstract_inverted_index.are | 111 |
| abstract_inverted_index.can | 85 |
| abstract_inverted_index.for | 12 |
| abstract_inverted_index.row | 55 |
| abstract_inverted_index.the | 29, 46, 59, 71, 88, 99, 120, 124 |
| abstract_inverted_index.TSR, | 19 |
| abstract_inverted_index.data | 30 |
| abstract_inverted_index.deep | 134 |
| abstract_inverted_index.into | 31 |
| abstract_inverted_index.term | 66, 102 |
| abstract_inverted_index.that | 123 |
| abstract_inverted_index.this | 1 |
| abstract_inverted_index.well | 86 |
| abstract_inverted_index.(TSR) | 10 |
| abstract_inverted_index.graph | 80, 100 |
| abstract_inverted_index.guide | 70 |
| abstract_inverted_index.label | 41 |
| abstract_inverted_index.novel | 6, 24 |
| abstract_inverted_index.other | 131 |
| abstract_inverted_index.space | 35 |
| abstract_inverted_index.term. | 61 |
| abstract_inverted_index.three | 114 |
| abstract_inverted_index.which | 84 |
| abstract_inverted_index.(FER). | 17 |
| abstract_inverted_index.binary | 40 |
| abstract_inverted_index.design | 77 |
| abstract_inverted_index.facial | 14, 116 |
| abstract_inverted_index.global | 79 |
| abstract_inverted_index.impose | 53 |
| abstract_inverted_index.latent | 33 |
| abstract_inverted_index.method | 127 |
| abstract_inverted_index.space. | 42 |
| abstract_inverted_index.sparse | 8 |
| abstract_inverted_index.strict | 39 |
| abstract_inverted_index.feature | 72 |
| abstract_inverted_index.firstly | 21 |
| abstract_inverted_index.further | 44 |
| abstract_inverted_index.instead | 36 |
| abstract_inverted_index.letter, | 2 |
| abstract_inverted_index.method, | 11 |
| abstract_inverted_index.popular | 115 |
| abstract_inverted_index.present | 22 |
| abstract_inverted_index.propose | 4 |
| abstract_inverted_index.regress | 28 |
| abstract_inverted_index.results | 121 |
| abstract_inverted_index.several | 109 |
| abstract_inverted_index.uncover | 104 |
| abstract_inverted_index.Finally, | 108 |
| abstract_inverted_index.function | 26 |
| abstract_inverted_index.learning | 136 |
| abstract_inverted_index.low-rank | 96 |
| abstract_inverted_index.manifold | 90 |
| abstract_inverted_index.methods. | 137 |
| abstract_inverted_index.non-deep | 132 |
| abstract_inverted_index.outliers | 49 |
| abstract_inverted_index.pairwise | 64 |
| abstract_inverted_index.preserve | 87 |
| abstract_inverted_index.proposed | 125 |
| abstract_inverted_index.relation | 65 |
| abstract_inverted_index.sparsity | 56 |
| abstract_inverted_index.superior | 129 |
| abstract_inverted_index.transfer | 73, 82, 135 |
| abstract_inverted_index.validate | 122 |
| abstract_inverted_index.Moreover, | 92 |
| abstract_inverted_index.Secondly, | 75 |
| abstract_inverted_index.alleviate | 45 |
| abstract_inverted_index.conducted | 112 |
| abstract_inverted_index.influence | 47 |
| abstract_inverted_index.introduce | 94 |
| abstract_inverted_index.learning. | 74 |
| abstract_inverted_index.additional | 105 |
| abstract_inverted_index.constraint | 57, 97 |
| abstract_inverted_index.databases, | 118 |
| abstract_inverted_index.expression | 15, 117 |
| abstract_inverted_index.introduced | 68 |
| abstract_inverted_index.knowledge, | 83 |
| abstract_inverted_index.regression | 9, 25, 60 |
| abstract_inverted_index.structural | 106 |
| abstract_inverted_index.structure. | 91 |
| abstract_inverted_index.experiments | 110 |
| abstract_inverted_index.recognition | 16 |
| abstract_inverted_index.information. | 107 |
| abstract_inverted_index.overfitting, | 51 |
| abstract_inverted_index.transferable | 7 |
| abstract_inverted_index.cross-database | 13, 89 |
| abstract_inverted_index.regularization | 101 |
| abstract_inverted_index.representation | 34 |
| cited_by_percentile_year | |
| countries_distinct_count | 2 |
| institutions_distinct_count | 3 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/5 |
| sustainable_development_goals[0].score | 0.46000000834465027 |
| sustainable_development_goals[0].display_name | Gender equality |
| citation_normalized_percentile.value | 0.17447617 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |