A One-Shot Lossless Algorithm for Cross-Cohort Learning in Mixed-Outcomes Analysis Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.01.09.24301073
Summary In cross-cohort studies, integrating diverse datasets, such as electronic health records (EHRs), is both essential and challenging due to cohort-specific variations, distributed data storage, and data privacy concerns. Traditional methods often require data pooling or complex data harmonization, which can reduce efficiency and limit the scope of cross-cohort learning. We introduce mixWAS, a one-shot, lossless algorithm that efficiently integrates distributed EHR datasets via summary statistics. Unlike existing approaches, mixWAS preserves cohort-specific covariate associations and supports simultaneous mixed-outcome analyses. Simulations demonstrate that mixWAS outperforms conventional methods in accuracy and efficiency across various scenarios. Applied to EHR data from seven cohorts in the US, mixWAS identified 4,530 significant cross-cohort genetic associations among traits such as blood lipids, BMI, and circulatory diseases. Validation with an independent UK EHR dataset confirmed 97.7% of these associations, underscoring the algorithm’s robustness. By enabling lossless cross-cohort integration, mixWAS improves the precision of multi-outcome analyses and expands the potential for actionable insights in healthcare research. The bigger picture Cross-cohort integration of electronic health record (EHR) datasets is critical for advancing genomic discovery but remains hindered by privacy concerns, cohort heterogeneity, and computational limitations. Traditional meta-analysis and federated methods either lose power or cannot fully model multiple mixed-outcome traits across distributed datasets. To address this, we developed mixWAS, a one-shot, lossless algorithm for integrating summary statistics across cohorts without sharing individual-level data. mixWAS simultaneously models binary and continuous outcomes, accounts for site-specific covariate heterogeneity, and requires only a single communication step between sites. Through extensive simulations and real data analyses, mixWAS consistently outperformed traditional Phenome-Wide Association Studies (PheWAS) and other multi-trait approaches in detecting multi-phenotype associations (MPAs). eyond genetic applications, mixWAS offers a general framework for distributed analysis of mixed-outcome data, with broad potential across biomedicine, public health, and other fields requiring privacy- preserving data integration. Highlights mixWAS enables lossless, one-shot cross-cohort integration of summary statistics Simultaneously models binary and continuous outcomes across distributed datasets Outperforms PheWAS in detecting multi-phenotype associations (MPA) Offers a general framework for distributed analysis of mixed-outcome data,
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.01.09.24301073
- https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdf
- OA Status
- green
- Cited By
- 1
- References
- 54
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4390691381
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4390691381Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.01.09.24301073Digital Object Identifier
- Title
-
A One-Shot Lossless Algorithm for Cross-Cohort Learning in Mixed-Outcomes AnalysisWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-10Full publication date if available
- Authors
-
Ruowang Li, Luke Benz, Rui Duan, Joshua C. Denny, Hákon Hákonarson, Jonathan D. Mosley, Jordan W. Smoller, Wei‐Qi Wei, Thomas Lumley, Marylyn D. Ritchie, Jason H. Moore, Yong ChenList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.01.09.24301073Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdfDirect OA link when available
- Concepts
-
Lossless compression, Shot (pellet), Computer science, Algorithm, Cohort, One shot, Artificial intelligence, Machine learning, Mathematics, Statistics, Data compression, Engineering, Materials science, Metallurgy, Mechanical engineeringTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
54Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4390691381 |
|---|---|
| doi | https://doi.org/10.1101/2024.01.09.24301073 |
| ids.doi | https://doi.org/10.1101/2024.01.09.24301073 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/38260403 |
| ids.openalex | https://openalex.org/W4390691381 |
| fwci | 1.09420016 |
| type | preprint |
| title | A One-Shot Lossless Algorithm for Cross-Cohort Learning in Mixed-Outcomes Analysis |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10261 |
| topics[0].field.id | https://openalex.org/fields/13 |
| topics[0].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[0].score | 0.9797000288963318 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1311 |
| topics[0].subfield.display_name | Genetics |
| topics[0].display_name | Genetic Associations and Epidemiology |
| topics[1].id | https://openalex.org/T10351 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9447000026702881 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2713 |
| topics[1].subfield.display_name | Epidemiology |
| topics[1].display_name | Liver Disease Diagnosis and Treatment |
| topics[2].id | https://openalex.org/T10594 |
| topics[2].field.id | https://openalex.org/fields/13 |
| topics[2].field.display_name | Biochemistry, Genetics and Molecular Biology |
| topics[2].score | 0.9125000238418579 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1311 |
| topics[2].subfield.display_name | Genetics |
| topics[2].display_name | Genetic and phenotypic traits in livestock |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C81081738 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7899408340454102 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q55542 |
| concepts[0].display_name | Lossless compression |
| concepts[1].id | https://openalex.org/C2778344882 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7001917958259583 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q278938 |
| concepts[1].display_name | Shot (pellet) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.6222410202026367 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C11413529 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5494894981384277 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[3].display_name | Algorithm |
| concepts[4].id | https://openalex.org/C72563966 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5305702090263367 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[4].display_name | Cohort |
| concepts[5].id | https://openalex.org/C2992734406 |
| concepts[5].level | 2 |
| concepts[5].score | 0.45917510986328125 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q413267 |
| concepts[5].display_name | One shot |
| concepts[6].id | https://openalex.org/C154945302 |
| concepts[6].level | 1 |
| concepts[6].score | 0.43113458156585693 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[6].display_name | Artificial intelligence |
| concepts[7].id | https://openalex.org/C119857082 |
| concepts[7].level | 1 |
| concepts[7].score | 0.36809399724006653 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[7].display_name | Machine learning |
| concepts[8].id | https://openalex.org/C33923547 |
| concepts[8].level | 0 |
| concepts[8].score | 0.19510957598686218 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[8].display_name | Mathematics |
| concepts[9].id | https://openalex.org/C105795698 |
| concepts[9].level | 1 |
| concepts[9].score | 0.15565943717956543 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[9].display_name | Statistics |
| concepts[10].id | https://openalex.org/C78548338 |
| concepts[10].level | 2 |
| concepts[10].score | 0.1349550485610962 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q2493 |
| concepts[10].display_name | Data compression |
| concepts[11].id | https://openalex.org/C127413603 |
| concepts[11].level | 0 |
| concepts[11].score | 0.12099313735961914 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[11].display_name | Engineering |
| concepts[12].id | https://openalex.org/C192562407 |
| concepts[12].level | 0 |
| concepts[12].score | 0.07772564888000488 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q228736 |
| concepts[12].display_name | Materials science |
| concepts[13].id | https://openalex.org/C191897082 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11467 |
| concepts[13].display_name | Metallurgy |
| concepts[14].id | https://openalex.org/C78519656 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q101333 |
| concepts[14].display_name | Mechanical engineering |
| keywords[0].id | https://openalex.org/keywords/lossless-compression |
| keywords[0].score | 0.7899408340454102 |
| keywords[0].display_name | Lossless compression |
| keywords[1].id | https://openalex.org/keywords/shot |
| keywords[1].score | 0.7001917958259583 |
| keywords[1].display_name | Shot (pellet) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.6222410202026367 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/algorithm |
| keywords[3].score | 0.5494894981384277 |
| keywords[3].display_name | Algorithm |
| keywords[4].id | https://openalex.org/keywords/cohort |
| keywords[4].score | 0.5305702090263367 |
| keywords[4].display_name | Cohort |
| keywords[5].id | https://openalex.org/keywords/one-shot |
| keywords[5].score | 0.45917510986328125 |
| keywords[5].display_name | One shot |
| keywords[6].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[6].score | 0.43113458156585693 |
| keywords[6].display_name | Artificial intelligence |
| keywords[7].id | https://openalex.org/keywords/machine-learning |
| keywords[7].score | 0.36809399724006653 |
| keywords[7].display_name | Machine learning |
| keywords[8].id | https://openalex.org/keywords/mathematics |
| keywords[8].score | 0.19510957598686218 |
| keywords[8].display_name | Mathematics |
| keywords[9].id | https://openalex.org/keywords/statistics |
| keywords[9].score | 0.15565943717956543 |
| keywords[9].display_name | Statistics |
| keywords[10].id | https://openalex.org/keywords/data-compression |
| keywords[10].score | 0.1349550485610962 |
| keywords[10].display_name | Data compression |
| keywords[11].id | https://openalex.org/keywords/engineering |
| keywords[11].score | 0.12099313735961914 |
| keywords[11].display_name | Engineering |
| keywords[12].id | https://openalex.org/keywords/materials-science |
| keywords[12].score | 0.07772564888000488 |
| keywords[12].display_name | Materials science |
| language | en |
| locations[0].id | doi:10.1101/2024.01.09.24301073 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.01.09.24301073 |
| locations[1].id | pmid:38260403 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | medRxiv : the preprint server for health sciences |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/38260403 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:10802662 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | cc-by-nc-nd |
| locations[2].pdf_url | https://pmc.ncbi.nlm.nih.gov/articles/PMC10802662/pdf/nihpp-2024.01.09.24301073v3.pdf |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | medRxiv |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/10802662 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5059592292 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7910-4253 |
| authorships[0].author.display_name | Ruowang Li |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I1282927834 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computational Biomedicine, Cedars-Sinai Medical Center |
| authorships[0].institutions[0].id | https://openalex.org/I1282927834 |
| authorships[0].institutions[0].ror | https://ror.org/02pammg90 |
| authorships[0].institutions[0].type | healthcare |
| authorships[0].institutions[0].lineage | https://openalex.org/I1282927834 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | Cedars-Sinai Medical Center |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Ruowang Li |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computational Biomedicine, Cedars-Sinai Medical Center |
| authorships[1].author.id | https://openalex.org/A5093670644 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Luke Benz |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Biostatistics, Harvard T.H. Chan School of Public Health |
| authorships[1].institutions[0].id | https://openalex.org/I136199984 |
| authorships[1].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | Harvard University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Luke Benz |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Biostatistics, Harvard T.H. Chan School of Public Health |
| authorships[2].author.id | https://openalex.org/A5089178051 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-9261-4864 |
| authorships[2].author.display_name | Rui Duan |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I136199984 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Biostatistics, Harvard T.H. Chan School of Public Health |
| authorships[2].institutions[0].id | https://openalex.org/I136199984 |
| authorships[2].institutions[0].ror | https://ror.org/03vek6s52 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I136199984 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | Harvard University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Rui Duan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Biostatistics, Harvard T.H. Chan School of Public Health |
| authorships[3].author.id | https://openalex.org/A5070908224 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-3049-7332 |
| authorships[3].author.display_name | Joshua C. Denny |
| authorships[3].countries | US |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I1299303238, https://openalex.org/I4210090236 |
| authorships[3].affiliations[0].raw_affiliation_string | National Human Genome Research Institute, National Institutes of Health |
| authorships[3].institutions[0].id | https://openalex.org/I4210090236 |
| authorships[3].institutions[0].ror | https://ror.org/00baak391 |
| authorships[3].institutions[0].type | facility |
| authorships[3].institutions[0].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238, https://openalex.org/I4210090236 |
| authorships[3].institutions[0].country_code | US |
| authorships[3].institutions[0].display_name | National Human Genome Research Institute |
| authorships[3].institutions[1].id | https://openalex.org/I1299303238 |
| authorships[3].institutions[1].ror | https://ror.org/01cwqze88 |
| authorships[3].institutions[1].type | government |
| authorships[3].institutions[1].lineage | https://openalex.org/I1299022934, https://openalex.org/I1299303238 |
| authorships[3].institutions[1].country_code | US |
| authorships[3].institutions[1].display_name | National Institutes of Health |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Joshua C. Denny |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | National Human Genome Research Institute, National Institutes of Health |
| authorships[4].author.id | https://openalex.org/A5088244425 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-2814-7461 |
| authorships[4].author.display_name | Hákon Hákonarson |
| authorships[4].countries | US |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I1335321130 |
| authorships[4].affiliations[1].raw_affiliation_string | Division of Human Genetics, Children's Hospital of Philadelphia |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I1335321130 |
| authorships[4].affiliations[2].raw_affiliation_string | Center for Applied Genomics, Children's Hospital of Philadelphia |
| authorships[4].institutions[0].id | https://openalex.org/I1335321130 |
| authorships[4].institutions[0].ror | https://ror.org/01z7r7q48 |
| authorships[4].institutions[0].type | healthcare |
| authorships[4].institutions[0].lineage | https://openalex.org/I1335321130 |
| authorships[4].institutions[0].country_code | US |
| authorships[4].institutions[0].display_name | Children's Hospital of Philadelphia |
| authorships[4].institutions[1].id | https://openalex.org/I79576946 |
| authorships[4].institutions[1].ror | https://ror.org/00b30xv10 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I79576946 |
| authorships[4].institutions[1].country_code | US |
| authorships[4].institutions[1].display_name | University of Pennsylvania |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Hakon Hakonarson |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Center for Applied Genomics, Children's Hospital of Philadelphia, Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Division of Human Genetics, Children's Hospital of Philadelphia |
| authorships[5].author.id | https://openalex.org/A5102887489 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-6421-2887 |
| authorships[5].author.display_name | Jonathan D. Mosley |
| authorships[5].countries | US |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I901861585 |
| authorships[5].affiliations[1].raw_affiliation_string | Department of Medicine, Vanderbilt University Medical Center |
| authorships[5].institutions[0].id | https://openalex.org/I901861585 |
| authorships[5].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[5].institutions[0].type | healthcare |
| authorships[5].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[5].institutions[0].country_code | US |
| authorships[5].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Jonathan D. Mosley |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center, Department of Medicine, Vanderbilt University Medical Center |
| authorships[6].author.id | https://openalex.org/A5044998046 |
| authorships[6].author.orcid | https://orcid.org/0000-0002-0381-6334 |
| authorships[6].author.display_name | Jordan W. Smoller |
| authorships[6].countries | US |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I4210087915 |
| authorships[6].affiliations[0].raw_affiliation_string | Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital |
| authorships[6].affiliations[1].institution_ids | https://openalex.org/I4210087915 |
| authorships[6].affiliations[1].raw_affiliation_string | Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital |
| authorships[6].institutions[0].id | https://openalex.org/I4210087915 |
| authorships[6].institutions[0].ror | https://ror.org/002pd6e78 |
| authorships[6].institutions[0].type | healthcare |
| authorships[6].institutions[0].lineage | https://openalex.org/I4210087915, https://openalex.org/I48633490 |
| authorships[6].institutions[0].country_code | US |
| authorships[6].institutions[0].display_name | Massachusetts General Hospital |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Jordan W. Smoller |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Center for Precision Psychiatry, Department of Psychiatry, Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital |
| authorships[7].author.id | https://openalex.org/A5040262386 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Wei‐Qi Wei |
| authorships[7].countries | US |
| authorships[7].affiliations[0].institution_ids | https://openalex.org/I901861585 |
| authorships[7].affiliations[0].raw_affiliation_string | Department of Biomedical Informatics, Vanderbilt University Medical Center |
| authorships[7].institutions[0].id | https://openalex.org/I901861585 |
| authorships[7].institutions[0].ror | https://ror.org/05dq2gs74 |
| authorships[7].institutions[0].type | healthcare |
| authorships[7].institutions[0].lineage | https://openalex.org/I4210162197, https://openalex.org/I901861585 |
| authorships[7].institutions[0].country_code | US |
| authorships[7].institutions[0].display_name | Vanderbilt University Medical Center |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Wei-Qi Wei |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Department of Biomedical Informatics, Vanderbilt University Medical Center |
| authorships[8].author.id | https://openalex.org/A5027800297 |
| authorships[8].author.orcid | https://orcid.org/0000-0003-4255-5437 |
| authorships[8].author.display_name | Thomas Lumley |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Thomas Lumley |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5107458808 |
| authorships[9].author.orcid | |
| authorships[9].author.display_name | Marylyn D. Ritchie |
| authorships[9].countries | US |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[9].affiliations[0].raw_affiliation_string | Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania |
| authorships[9].institutions[0].id | https://openalex.org/I79576946 |
| authorships[9].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[9].institutions[0].type | education |
| authorships[9].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[9].institutions[0].country_code | US |
| authorships[9].institutions[0].display_name | University of Pennsylvania |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Marylyn D. Ritchie |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Department of Genetics and Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania |
| authorships[10].author.id | https://openalex.org/A5032971510 |
| authorships[10].author.orcid | https://orcid.org/0000-0002-5015-1099 |
| authorships[10].author.display_name | Jason H. Moore |
| authorships[10].countries | US |
| authorships[10].affiliations[0].institution_ids | https://openalex.org/I1282927834 |
| authorships[10].affiliations[0].raw_affiliation_string | Department of Computational Biomedicine, Cedars-Sinai Medical Center |
| authorships[10].institutions[0].id | https://openalex.org/I1282927834 |
| authorships[10].institutions[0].ror | https://ror.org/02pammg90 |
| authorships[10].institutions[0].type | healthcare |
| authorships[10].institutions[0].lineage | https://openalex.org/I1282927834 |
| authorships[10].institutions[0].country_code | US |
| authorships[10].institutions[0].display_name | Cedars-Sinai Medical Center |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Jason H. Moore |
| authorships[10].is_corresponding | True |
| authorships[10].raw_affiliation_strings | Department of Computational Biomedicine, Cedars-Sinai Medical Center |
| authorships[11].author.id | https://openalex.org/A5100454438 |
| authorships[11].author.orcid | https://orcid.org/0000-0003-0835-0788 |
| authorships[11].author.display_name | Yong Chen |
| authorships[11].countries | US |
| authorships[11].affiliations[0].institution_ids | https://openalex.org/I79576946 |
| authorships[11].affiliations[0].raw_affiliation_string | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania |
| authorships[11].institutions[0].id | https://openalex.org/I79576946 |
| authorships[11].institutions[0].ror | https://ror.org/00b30xv10 |
| authorships[11].institutions[0].type | education |
| authorships[11].institutions[0].lineage | https://openalex.org/I79576946 |
| authorships[11].institutions[0].country_code | US |
| authorships[11].institutions[0].display_name | University of Pennsylvania |
| authorships[11].author_position | last |
| authorships[11].raw_author_name | Yong Chen |
| authorships[11].is_corresponding | True |
| authorships[11].raw_affiliation_strings | Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A One-Shot Lossless Algorithm for Cross-Cohort Learning in Mixed-Outcomes Analysis |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10261 |
| primary_topic.field.id | https://openalex.org/fields/13 |
| primary_topic.field.display_name | Biochemistry, Genetics and Molecular Biology |
| primary_topic.score | 0.9797000288963318 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1311 |
| primary_topic.subfield.display_name | Genetics |
| primary_topic.display_name | Genetic Associations and Epidemiology |
| related_works | https://openalex.org/W2497720472, https://openalex.org/W4292659306, https://openalex.org/W3044321615, https://openalex.org/W2806221744, https://openalex.org/W2326937258, https://openalex.org/W394267150, https://openalex.org/W2773965352, https://openalex.org/W4294892107, https://openalex.org/W2357748469, https://openalex.org/W2392917037 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 3 |
| best_oa_location.id | doi:10.1101/2024.01.09.24301073 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.01.09.24301073 |
| primary_location.id | doi:10.1101/2024.01.09.24301073 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2024/01/10/2024.01.09.24301073.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.01.09.24301073 |
| publication_date | 2024-01-10 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3120392574, https://openalex.org/W2964647804, https://openalex.org/W2278828392, https://openalex.org/W2895486342, https://openalex.org/W2587257410, https://openalex.org/W2765828622, https://openalex.org/W2142071150, https://openalex.org/W2064337796, https://openalex.org/W2117446594, https://openalex.org/W2725988230, https://openalex.org/W4315644439, https://openalex.org/W1980991473, https://openalex.org/W2070082005, https://openalex.org/W2998840182, https://openalex.org/W2116868464, https://openalex.org/W2969996045, https://openalex.org/W2626606138, https://openalex.org/W2503030347, https://openalex.org/W4312207637, https://openalex.org/W4282923957, https://openalex.org/W1996299724, https://openalex.org/W2951276412, https://openalex.org/W3001381398, https://openalex.org/W3028279887, https://openalex.org/W2115792845, https://openalex.org/W3094181094, https://openalex.org/W4225300770, https://openalex.org/W2897181378, https://openalex.org/W4386443935, https://openalex.org/W2795155140, https://openalex.org/W2113105800, https://openalex.org/W2780560743, https://openalex.org/W4207032724, https://openalex.org/W4400945572, https://openalex.org/W4407884152, https://openalex.org/W2022815972, https://openalex.org/W4396815400, https://openalex.org/W1982636457, https://openalex.org/W4392091326, https://openalex.org/W2766556645, https://openalex.org/W4405375153, https://openalex.org/W2951393041, https://openalex.org/W2907099021, https://openalex.org/W2101752541, https://openalex.org/W2950172732, https://openalex.org/W2056636676, https://openalex.org/W3084568901, https://openalex.org/W4311227832, https://openalex.org/W1923274812, https://openalex.org/W4399533205, https://openalex.org/W2924530200, https://openalex.org/W2586637063, https://openalex.org/W2010457001, https://openalex.org/W6920800625 |
| referenced_works_count | 54 |
| abstract_inverted_index.a | 53, 210, 239, 274, 325 |
| abstract_inverted_index.By | 136 |
| abstract_inverted_index.In | 1 |
| abstract_inverted_index.To | 204 |
| abstract_inverted_index.UK | 124 |
| abstract_inverted_index.We | 50 |
| abstract_inverted_index.an | 122 |
| abstract_inverted_index.as | 8, 113 |
| abstract_inverted_index.by | 178 |
| abstract_inverted_index.in | 86, 100, 155, 264, 319 |
| abstract_inverted_index.is | 13, 169 |
| abstract_inverted_index.of | 47, 129, 145, 163, 280, 305, 331 |
| abstract_inverted_index.or | 35, 194 |
| abstract_inverted_index.to | 19, 94 |
| abstract_inverted_index.we | 207 |
| abstract_inverted_index.EHR | 61, 95, 125 |
| abstract_inverted_index.The | 158 |
| abstract_inverted_index.US, | 102 |
| abstract_inverted_index.and | 16, 25, 43, 74, 88, 117, 148, 183, 188, 228, 236, 248, 260, 290, 311 |
| abstract_inverted_index.but | 175 |
| abstract_inverted_index.can | 40 |
| abstract_inverted_index.due | 18 |
| abstract_inverted_index.for | 152, 171, 214, 232, 277, 328 |
| abstract_inverted_index.the | 45, 101, 133, 143, 150 |
| abstract_inverted_index.via | 63 |
| abstract_inverted_index.BMI, | 116 |
| abstract_inverted_index.both | 14 |
| abstract_inverted_index.data | 23, 26, 33, 37, 96, 250, 296 |
| abstract_inverted_index.from | 97 |
| abstract_inverted_index.lose | 192 |
| abstract_inverted_index.only | 238 |
| abstract_inverted_index.real | 249 |
| abstract_inverted_index.step | 242 |
| abstract_inverted_index.such | 7, 112 |
| abstract_inverted_index.that | 57, 81 |
| abstract_inverted_index.with | 121, 283 |
| abstract_inverted_index.(EHR) | 167 |
| abstract_inverted_index.(MPA) | 323 |
| abstract_inverted_index.4,530 | 105 |
| abstract_inverted_index.97.7% | 128 |
| abstract_inverted_index.among | 110 |
| abstract_inverted_index.blood | 114 |
| abstract_inverted_index.broad | 284 |
| abstract_inverted_index.data, | 282, 333 |
| abstract_inverted_index.data. | 223 |
| abstract_inverted_index.eyond | 269 |
| abstract_inverted_index.fully | 196 |
| abstract_inverted_index.limit | 44 |
| abstract_inverted_index.model | 197 |
| abstract_inverted_index.often | 31 |
| abstract_inverted_index.other | 261, 291 |
| abstract_inverted_index.power | 193 |
| abstract_inverted_index.scope | 46 |
| abstract_inverted_index.seven | 98 |
| abstract_inverted_index.these | 130 |
| abstract_inverted_index.this, | 206 |
| abstract_inverted_index.which | 39 |
| abstract_inverted_index.Offers | 324 |
| abstract_inverted_index.PheWAS | 318 |
| abstract_inverted_index.Unlike | 66 |
| abstract_inverted_index.across | 90, 201, 218, 286, 314 |
| abstract_inverted_index.bigger | 159 |
| abstract_inverted_index.binary | 227, 310 |
| abstract_inverted_index.cannot | 195 |
| abstract_inverted_index.cohort | 181 |
| abstract_inverted_index.either | 191 |
| abstract_inverted_index.fields | 292 |
| abstract_inverted_index.health | 10, 165 |
| abstract_inverted_index.mixWAS | 69, 82, 103, 141, 224, 252, 272, 299 |
| abstract_inverted_index.models | 226, 309 |
| abstract_inverted_index.offers | 273 |
| abstract_inverted_index.public | 288 |
| abstract_inverted_index.record | 166 |
| abstract_inverted_index.reduce | 41 |
| abstract_inverted_index.single | 240 |
| abstract_inverted_index.sites. | 244 |
| abstract_inverted_index.traits | 111, 200 |
| abstract_inverted_index.(EHRs), | 12 |
| abstract_inverted_index.(MPAs). | 268 |
| abstract_inverted_index.Applied | 93 |
| abstract_inverted_index.Studies | 258 |
| abstract_inverted_index.Summary | 0 |
| abstract_inverted_index.Through | 245 |
| abstract_inverted_index.address | 205 |
| abstract_inverted_index.between | 243 |
| abstract_inverted_index.cohorts | 99, 219 |
| abstract_inverted_index.complex | 36 |
| abstract_inverted_index.dataset | 126 |
| abstract_inverted_index.diverse | 5 |
| abstract_inverted_index.enables | 300 |
| abstract_inverted_index.expands | 149 |
| abstract_inverted_index.general | 275, 326 |
| abstract_inverted_index.genetic | 108, 270 |
| abstract_inverted_index.genomic | 173 |
| abstract_inverted_index.health, | 289 |
| abstract_inverted_index.lipids, | 115 |
| abstract_inverted_index.methods | 30, 85, 190 |
| abstract_inverted_index.mixWAS, | 52, 209 |
| abstract_inverted_index.picture | 160 |
| abstract_inverted_index.pooling | 34 |
| abstract_inverted_index.privacy | 27, 179 |
| abstract_inverted_index.records | 11 |
| abstract_inverted_index.remains | 176 |
| abstract_inverted_index.require | 32 |
| abstract_inverted_index.sharing | 221 |
| abstract_inverted_index.summary | 64, 216, 306 |
| abstract_inverted_index.various | 91 |
| abstract_inverted_index.without | 220 |
| abstract_inverted_index.(PheWAS) | 259 |
| abstract_inverted_index.accounts | 231 |
| abstract_inverted_index.accuracy | 87 |
| abstract_inverted_index.analyses | 147 |
| abstract_inverted_index.analysis | 279, 330 |
| abstract_inverted_index.critical | 170 |
| abstract_inverted_index.datasets | 62, 168, 316 |
| abstract_inverted_index.enabling | 137 |
| abstract_inverted_index.existing | 67 |
| abstract_inverted_index.hindered | 177 |
| abstract_inverted_index.improves | 142 |
| abstract_inverted_index.insights | 154 |
| abstract_inverted_index.lossless | 55, 138, 212 |
| abstract_inverted_index.multiple | 198 |
| abstract_inverted_index.one-shot | 302 |
| abstract_inverted_index.outcomes | 313 |
| abstract_inverted_index.privacy- | 294 |
| abstract_inverted_index.requires | 237 |
| abstract_inverted_index.storage, | 24 |
| abstract_inverted_index.studies, | 3 |
| abstract_inverted_index.supports | 75 |
| abstract_inverted_index.advancing | 172 |
| abstract_inverted_index.algorithm | 56, 213 |
| abstract_inverted_index.analyses, | 251 |
| abstract_inverted_index.analyses. | 78 |
| abstract_inverted_index.concerns, | 180 |
| abstract_inverted_index.concerns. | 28 |
| abstract_inverted_index.confirmed | 127 |
| abstract_inverted_index.covariate | 72, 234 |
| abstract_inverted_index.datasets, | 6 |
| abstract_inverted_index.datasets. | 203 |
| abstract_inverted_index.detecting | 265, 320 |
| abstract_inverted_index.developed | 208 |
| abstract_inverted_index.discovery | 174 |
| abstract_inverted_index.diseases. | 119 |
| abstract_inverted_index.essential | 15 |
| abstract_inverted_index.extensive | 246 |
| abstract_inverted_index.federated | 189 |
| abstract_inverted_index.framework | 276, 327 |
| abstract_inverted_index.introduce | 51 |
| abstract_inverted_index.learning. | 49 |
| abstract_inverted_index.lossless, | 301 |
| abstract_inverted_index.one-shot, | 54, 211 |
| abstract_inverted_index.outcomes, | 230 |
| abstract_inverted_index.potential | 151, 285 |
| abstract_inverted_index.precision | 144 |
| abstract_inverted_index.preserves | 70 |
| abstract_inverted_index.requiring | 293 |
| abstract_inverted_index.research. | 157 |
| abstract_inverted_index.Highlights | 298 |
| abstract_inverted_index.Validation | 120 |
| abstract_inverted_index.actionable | 153 |
| abstract_inverted_index.approaches | 263 |
| abstract_inverted_index.continuous | 229, 312 |
| abstract_inverted_index.efficiency | 42, 89 |
| abstract_inverted_index.electronic | 9, 164 |
| abstract_inverted_index.healthcare | 156 |
| abstract_inverted_index.identified | 104 |
| abstract_inverted_index.integrates | 59 |
| abstract_inverted_index.preserving | 295 |
| abstract_inverted_index.scenarios. | 92 |
| abstract_inverted_index.statistics | 217, 307 |
| abstract_inverted_index.Association | 257 |
| abstract_inverted_index.Outperforms | 317 |
| abstract_inverted_index.Simulations | 79 |
| abstract_inverted_index.Traditional | 29, 186 |
| abstract_inverted_index.approaches, | 68 |
| abstract_inverted_index.challenging | 17 |
| abstract_inverted_index.circulatory | 118 |
| abstract_inverted_index.demonstrate | 80 |
| abstract_inverted_index.distributed | 22, 60, 202, 278, 315, 329 |
| abstract_inverted_index.efficiently | 58 |
| abstract_inverted_index.independent | 123 |
| abstract_inverted_index.integrating | 4, 215 |
| abstract_inverted_index.integration | 162, 304 |
| abstract_inverted_index.multi-trait | 262 |
| abstract_inverted_index.outperforms | 83 |
| abstract_inverted_index.robustness. | 135 |
| abstract_inverted_index.significant | 106 |
| abstract_inverted_index.simulations | 247 |
| abstract_inverted_index.statistics. | 65 |
| abstract_inverted_index.traditional | 255 |
| abstract_inverted_index.variations, | 21 |
| abstract_inverted_index.Cross-cohort | 161 |
| abstract_inverted_index.Phenome-Wide | 256 |
| abstract_inverted_index.associations | 73, 109, 267, 322 |
| abstract_inverted_index.biomedicine, | 287 |
| abstract_inverted_index.consistently | 253 |
| abstract_inverted_index.conventional | 84 |
| abstract_inverted_index.cross-cohort | 2, 48, 107, 139, 303 |
| abstract_inverted_index.integration, | 140 |
| abstract_inverted_index.integration. | 297 |
| abstract_inverted_index.limitations. | 185 |
| abstract_inverted_index.outperformed | 254 |
| abstract_inverted_index.simultaneous | 76 |
| abstract_inverted_index.underscoring | 132 |
| abstract_inverted_index.algorithm’s | 134 |
| abstract_inverted_index.applications, | 271 |
| abstract_inverted_index.associations, | 131 |
| abstract_inverted_index.communication | 241 |
| abstract_inverted_index.computational | 184 |
| abstract_inverted_index.meta-analysis | 187 |
| abstract_inverted_index.mixed-outcome | 77, 199, 281, 332 |
| abstract_inverted_index.multi-outcome | 146 |
| abstract_inverted_index.site-specific | 233 |
| abstract_inverted_index.Simultaneously | 308 |
| abstract_inverted_index.harmonization, | 38 |
| abstract_inverted_index.heterogeneity, | 182, 235 |
| abstract_inverted_index.simultaneously | 225 |
| abstract_inverted_index.cohort-specific | 20, 71 |
| abstract_inverted_index.multi-phenotype | 266, 321 |
| abstract_inverted_index.individual-level | 222 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| corresponding_author_ids | https://openalex.org/A5093670644, https://openalex.org/A5032971510, https://openalex.org/A5100454438 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 12 |
| corresponding_institution_ids | https://openalex.org/I1282927834, https://openalex.org/I136199984, https://openalex.org/I79576946 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/17 |
| sustainable_development_goals[0].score | 0.44999998807907104 |
| sustainable_development_goals[0].display_name | Partnerships for the goals |
| citation_normalized_percentile.value | 0.70046093 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |