A Particle Swarm Optimized Learning Model of Fault Classification in Web-Apps Article Swipe
YOU?
·
· 2019
· Open Access
·
· DOI: https://doi.org/10.1109/access.2019.2894871
The term web-app defines the current dynamic pragmatics of the website, where the user has control. Finding faults in such dynamic content is challenging, as to whether the fault is exposed or not depends on its execution path. Moreover, the complexity and uniqueness of each web application make fault assessment an extremely laborious and expensive task. Also, artificial fault injection models are run in controlled and simulated environments, which may not be representative of the real-world fault data. Classifying faults can intelligently enhance the quality of the web-apps by the assessment of probable faults. In this paper, an empirical study is conducted to classify faults in bug reports of three open-source web-apps (qaManager, bitWeaver, and WebCalendar) and reviews of two play store web-apps (Dineout: Reserve a Table and Wynk Music). Five supervised learning algorithms (naïve Bayesian, decision tree, support vector machines, K-nearest neighbor, and multi-layer perceptron) have been first evaluated based on the conventional term frequency-inverse document frequency (tf-idf) feature extraction method, and subsequently, a feature selection method to improve classifier performance is proposed using particle swarm optimization (a nature-inspired, meta-heuristic algorithm). This paper is a preliminary exploratory study to build an automated tool, which can optimally categorize faults. The empirical analysis validates that the particle swarm optimization for feature selection in fault classification task outperforms the tf-idf filter-based classifiers with an average accuracy gain of about 11% and nearly 26% average feature reduction. The highest accuracy of 93.35% is shown by the decision tree after feature selection.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1109/access.2019.2894871
- https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdf
- OA Status
- gold
- Cited By
- 29
- References
- 35
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W2912920791
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2912920791Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/access.2019.2894871Digital Object Identifier
- Title
-
A Particle Swarm Optimized Learning Model of Fault Classification in Web-AppsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2019Year of publication
- Publication date
-
2019-01-01Full publication date if available
- Authors
-
Deepak Kumar Jain, Akshi Kumar, Saurabh Raj Sangwan, Gia Nhu Nguyen, Prayag TiwariList of authors in order
- Landing page
-
https://doi.org/10.1109/access.2019.2894871Publisher landing page
- PDF URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdfDirect OA link when available
- Concepts
-
Computer science, Feature selection, Artificial intelligence, Machine learning, Data mining, Particle swarm optimization, Support vector machineTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
29Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2, 2024: 2, 2023: 4, 2022: 3, 2021: 4Per-year citation counts (last 5 years)
- References (count)
-
35Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2912920791 |
|---|---|
| doi | https://doi.org/10.1109/access.2019.2894871 |
| ids.doi | https://doi.org/10.1109/access.2019.2894871 |
| ids.mag | 2912920791 |
| ids.openalex | https://openalex.org/W2912920791 |
| fwci | 7.64421079 |
| type | article |
| title | A Particle Swarm Optimized Learning Model of Fault Classification in Web-Apps |
| biblio.issue | |
| biblio.volume | 7 |
| biblio.last_page | 18489 |
| biblio.first_page | 18480 |
| topics[0].id | https://openalex.org/T12016 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9973000288009644 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1710 |
| topics[0].subfield.display_name | Information Systems |
| topics[0].display_name | Web Data Mining and Analysis |
| topics[1].id | https://openalex.org/T10260 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9922000169754028 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1710 |
| topics[1].subfield.display_name | Information Systems |
| topics[1].display_name | Software Engineering Research |
| topics[2].id | https://openalex.org/T11550 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9581000208854675 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Text and Document Classification Technologies |
| funders[0].id | https://openalex.org/F4320322687 |
| funders[0].ror | https://ror.org/03dgaqz26 |
| funders[0].display_name | Chongqing University of Posts and Telecommunications |
| is_xpac | False |
| apc_list.value | 1850 |
| apc_list.currency | USD |
| apc_list.value_usd | 1850 |
| apc_paid.value | 1850 |
| apc_paid.currency | USD |
| apc_paid.value_usd | 1850 |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.8152956962585449 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C148483581 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6247950792312622 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q446488 |
| concepts[1].display_name | Feature selection |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5792397856712341 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C119857082 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5744448900222778 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[3].display_name | Machine learning |
| concepts[4].id | https://openalex.org/C124101348 |
| concepts[4].level | 1 |
| concepts[4].score | 0.529542088508606 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[4].display_name | Data mining |
| concepts[5].id | https://openalex.org/C85617194 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5249707102775574 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[5].display_name | Particle swarm optimization |
| concepts[6].id | https://openalex.org/C12267149 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44725659489631653 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q282453 |
| concepts[6].display_name | Support vector machine |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.8152956962585449 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/feature-selection |
| keywords[1].score | 0.6247950792312622 |
| keywords[1].display_name | Feature selection |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5792397856712341 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/machine-learning |
| keywords[3].score | 0.5744448900222778 |
| keywords[3].display_name | Machine learning |
| keywords[4].id | https://openalex.org/keywords/data-mining |
| keywords[4].score | 0.529542088508606 |
| keywords[4].display_name | Data mining |
| keywords[5].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[5].score | 0.5249707102775574 |
| keywords[5].display_name | Particle swarm optimization |
| keywords[6].id | https://openalex.org/keywords/support-vector-machine |
| keywords[6].score | 0.44725659489631653 |
| keywords[6].display_name | Support vector machine |
| language | en |
| locations[0].id | doi:10.1109/access.2019.2894871 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S2485537415 |
| locations[0].source.issn | 2169-3536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2169-3536 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | IEEE Access |
| locations[0].source.host_organization | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_name | Institute of Electrical and Electronics Engineers |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319808 |
| locations[0].source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| locations[0].license | |
| locations[0].pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | IEEE Access |
| locations[0].landing_page_url | https://doi.org/10.1109/access.2019.2894871 |
| locations[1].id | pmh:oai:doaj.org/article:3247f9f9caa14ef7b711f552ca72769c |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | cc-by-sa |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by-sa |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | IEEE Access, Vol 7, Pp 18480-18489 (2019) |
| locations[1].landing_page_url | https://doaj.org/article/3247f9f9caa14ef7b711f552ca72769c |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5110109385 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9848-6587 |
| authorships[0].author.display_name | Deepak Kumar Jain |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I10535382 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, University of Posts and Telecommunications, Chongqing, China |
| authorships[0].institutions[0].id | https://openalex.org/I10535382 |
| authorships[0].institutions[0].ror | https://ror.org/03dgaqz26 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I10535382 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Chongqing University of Posts and Telecommunications |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Deepak Kumar Jain |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Intelligent Air-Ground Cooperative Control for Universities in Chongqing, College of Automation, University of Posts and Telecommunications, Chongqing, China |
| authorships[1].author.id | https://openalex.org/A5046087654 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-4263-7168 |
| authorships[1].author.display_name | Akshi Kumar |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Delhi Technological University, New Delhi, India |
| authorships[1].institutions[0].id | https://openalex.org/I863896202 |
| authorships[1].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Delhi Technological University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Akshi Kumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Computer Science and Engineering, Delhi Technological University, New Delhi, India |
| authorships[2].author.id | https://openalex.org/A5091017133 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0832-0362 |
| authorships[2].author.display_name | Saurabh Raj Sangwan |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I863896202 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Computer Science and Engineering, Delhi Technological University, New Delhi, India |
| authorships[2].institutions[0].id | https://openalex.org/I863896202 |
| authorships[2].institutions[0].ror | https://ror.org/01ztcvt22 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I863896202 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Delhi Technological University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Saurabh Raj Sangwan |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science and Engineering, Delhi Technological University, New Delhi, India |
| authorships[3].author.id | https://openalex.org/A5030813254 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4267-3900 |
| authorships[3].author.display_name | Gia Nhu Nguyen |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I170238339 |
| authorships[3].affiliations[0].raw_affiliation_string | Graduate School, Duy Tan University, Danang, Vietnam |
| authorships[3].institutions[0].id | https://openalex.org/I170238339 |
| authorships[3].institutions[0].ror | https://ror.org/05ezss144 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I170238339 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Duy Tan University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Gia Nhu Nguyen |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Graduate School, Duy Tan University, Danang, Vietnam |
| authorships[4].author.id | https://openalex.org/A5082046789 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2851-4260 |
| authorships[4].author.display_name | Prayag Tiwari |
| authorships[4].countries | IT |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I138689650 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Information Engineering, University of Padova, Padua, Italy |
| authorships[4].institutions[0].id | https://openalex.org/I138689650 |
| authorships[4].institutions[0].ror | https://ror.org/00240q980 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I138689650 |
| authorships[4].institutions[0].country_code | IT |
| authorships[4].institutions[0].display_name | University of Padua |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Prayag Tiwari |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Information Engineering, University of Padova, Padua, Italy |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Particle Swarm Optimized Learning Model of Fault Classification in Web-Apps |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12016 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9973000288009644 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1710 |
| primary_topic.subfield.display_name | Information Systems |
| primary_topic.display_name | Web Data Mining and Analysis |
| related_works | https://openalex.org/W2090763504, https://openalex.org/W148178222, https://openalex.org/W2104657898, https://openalex.org/W1948992892, https://openalex.org/W1886884218, https://openalex.org/W1910826599, https://openalex.org/W2012353789, https://openalex.org/W2530420969, https://openalex.org/W2051187167, https://openalex.org/W1980100242 |
| cited_by_count | 29 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 2 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 4 |
| counts_by_year[5].year | 2020 |
| counts_by_year[5].cited_by_count | 5 |
| counts_by_year[6].year | 2019 |
| counts_by_year[6].cited_by_count | 9 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1109/access.2019.2894871 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2485537415 |
| best_oa_location.source.issn | 2169-3536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2169-3536 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | IEEE Access |
| best_oa_location.source.host_organization | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| best_oa_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | IEEE Access |
| best_oa_location.landing_page_url | https://doi.org/10.1109/access.2019.2894871 |
| primary_location.id | doi:10.1109/access.2019.2894871 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S2485537415 |
| primary_location.source.issn | 2169-3536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2169-3536 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | IEEE Access |
| primary_location.source.host_organization | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_name | Institute of Electrical and Electronics Engineers |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319808 |
| primary_location.source.host_organization_lineage_names | Institute of Electrical and Electronics Engineers |
| primary_location.license | |
| primary_location.pdf_url | https://ieeexplore.ieee.org/ielx7/6287639/8600701/08639005.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | IEEE Access |
| primary_location.landing_page_url | https://doi.org/10.1109/access.2019.2894871 |
| publication_date | 2019-01-01 |
| publication_year | 2019 |
| referenced_works | https://openalex.org/W2394860501, https://openalex.org/W2614411236, https://openalex.org/W2061350602, https://openalex.org/W6676744775, https://openalex.org/W2112193258, https://openalex.org/W2889389458, https://openalex.org/W2888966007, https://openalex.org/W6748767542, https://openalex.org/W1980867644, https://openalex.org/W2098162425, https://openalex.org/W2135123714, https://openalex.org/W2165299997, https://openalex.org/W2543929865, https://openalex.org/W6756789877, https://openalex.org/W2167101736, https://openalex.org/W2144378488, https://openalex.org/W2116408190, https://openalex.org/W2790500818, https://openalex.org/W2157111415, https://openalex.org/W6639878909, https://openalex.org/W6602539534, https://openalex.org/W2898995296, https://openalex.org/W1963626514, https://openalex.org/W6758304589, https://openalex.org/W2109364787, https://openalex.org/W2152195021, https://openalex.org/W2137981452, https://openalex.org/W2791299726, https://openalex.org/W2160969591, https://openalex.org/W2911905642, https://openalex.org/W2111975591, https://openalex.org/W62915308, https://openalex.org/W2902672843, https://openalex.org/W2543580944, https://openalex.org/W1905610130 |
| referenced_works_count | 35 |
| abstract_inverted_index.a | 125, 164, 185 |
| abstract_inverted_index.(a | 178 |
| abstract_inverted_index.In | 94 |
| abstract_inverted_index.an | 50, 97, 191, 221 |
| abstract_inverted_index.as | 24 |
| abstract_inverted_index.be | 71 |
| abstract_inverted_index.by | 88, 241 |
| abstract_inverted_index.in | 18, 63, 105, 211 |
| abstract_inverted_index.is | 22, 29, 100, 172, 184, 239 |
| abstract_inverted_index.of | 8, 43, 73, 85, 91, 108, 118, 225, 237 |
| abstract_inverted_index.on | 34, 151 |
| abstract_inverted_index.or | 31 |
| abstract_inverted_index.to | 25, 102, 168, 189 |
| abstract_inverted_index.11% | 227 |
| abstract_inverted_index.26% | 230 |
| abstract_inverted_index.The | 0, 199, 234 |
| abstract_inverted_index.and | 41, 53, 65, 114, 116, 127, 143, 162, 228 |
| abstract_inverted_index.are | 61 |
| abstract_inverted_index.bug | 106 |
| abstract_inverted_index.can | 80, 195 |
| abstract_inverted_index.for | 208 |
| abstract_inverted_index.has | 14 |
| abstract_inverted_index.its | 35 |
| abstract_inverted_index.may | 69 |
| abstract_inverted_index.not | 32, 70 |
| abstract_inverted_index.run | 62 |
| abstract_inverted_index.the | 4, 9, 12, 27, 39, 74, 83, 86, 89, 152, 204, 216, 242 |
| abstract_inverted_index.two | 119 |
| abstract_inverted_index.web | 45 |
| abstract_inverted_index.Five | 130 |
| abstract_inverted_index.This | 182 |
| abstract_inverted_index.Wynk | 128 |
| abstract_inverted_index.been | 147 |
| abstract_inverted_index.each | 44 |
| abstract_inverted_index.gain | 224 |
| abstract_inverted_index.have | 146 |
| abstract_inverted_index.make | 47 |
| abstract_inverted_index.play | 120 |
| abstract_inverted_index.such | 19 |
| abstract_inverted_index.task | 214 |
| abstract_inverted_index.term | 1, 154 |
| abstract_inverted_index.that | 203 |
| abstract_inverted_index.this | 95 |
| abstract_inverted_index.tree | 244 |
| abstract_inverted_index.user | 13 |
| abstract_inverted_index.with | 220 |
| abstract_inverted_index.Also, | 56 |
| abstract_inverted_index.Table | 126 |
| abstract_inverted_index.about | 226 |
| abstract_inverted_index.after | 245 |
| abstract_inverted_index.based | 150 |
| abstract_inverted_index.build | 190 |
| abstract_inverted_index.data. | 77 |
| abstract_inverted_index.fault | 28, 48, 58, 76, 212 |
| abstract_inverted_index.first | 148 |
| abstract_inverted_index.paper | 183 |
| abstract_inverted_index.path. | 37 |
| abstract_inverted_index.shown | 240 |
| abstract_inverted_index.store | 121 |
| abstract_inverted_index.study | 99, 188 |
| abstract_inverted_index.swarm | 176, 206 |
| abstract_inverted_index.task. | 55 |
| abstract_inverted_index.three | 109 |
| abstract_inverted_index.tool, | 193 |
| abstract_inverted_index.tree, | 137 |
| abstract_inverted_index.using | 174 |
| abstract_inverted_index.where | 11 |
| abstract_inverted_index.which | 68, 194 |
| abstract_inverted_index.93.35% | 238 |
| abstract_inverted_index.faults | 17, 79, 104 |
| abstract_inverted_index.method | 167 |
| abstract_inverted_index.models | 60 |
| abstract_inverted_index.nearly | 229 |
| abstract_inverted_index.paper, | 96 |
| abstract_inverted_index.tf-idf | 217 |
| abstract_inverted_index.vector | 139 |
| abstract_inverted_index.Finding | 16 |
| abstract_inverted_index.Music). | 129 |
| abstract_inverted_index.Reserve | 124 |
| abstract_inverted_index.average | 222, 231 |
| abstract_inverted_index.content | 21 |
| abstract_inverted_index.current | 5 |
| abstract_inverted_index.defines | 3 |
| abstract_inverted_index.depends | 33 |
| abstract_inverted_index.dynamic | 6, 20 |
| abstract_inverted_index.enhance | 82 |
| abstract_inverted_index.exposed | 30 |
| abstract_inverted_index.faults. | 93, 198 |
| abstract_inverted_index.feature | 159, 165, 209, 232, 246 |
| abstract_inverted_index.highest | 235 |
| abstract_inverted_index.improve | 169 |
| abstract_inverted_index.method, | 161 |
| abstract_inverted_index.quality | 84 |
| abstract_inverted_index.reports | 107 |
| abstract_inverted_index.reviews | 117 |
| abstract_inverted_index.support | 138 |
| abstract_inverted_index.web-app | 2 |
| abstract_inverted_index.whether | 26 |
| abstract_inverted_index.(tf-idf) | 158 |
| abstract_inverted_index.accuracy | 223, 236 |
| abstract_inverted_index.analysis | 201 |
| abstract_inverted_index.classify | 103 |
| abstract_inverted_index.control. | 15 |
| abstract_inverted_index.decision | 136, 243 |
| abstract_inverted_index.document | 156 |
| abstract_inverted_index.learning | 132 |
| abstract_inverted_index.particle | 175, 205 |
| abstract_inverted_index.probable | 92 |
| abstract_inverted_index.proposed | 173 |
| abstract_inverted_index.web-apps | 87, 111, 122 |
| abstract_inverted_index.website, | 10 |
| abstract_inverted_index.(Dineout: | 123 |
| abstract_inverted_index.Bayesian, | 135 |
| abstract_inverted_index.K-nearest | 141 |
| abstract_inverted_index.Moreover, | 38 |
| abstract_inverted_index.automated | 192 |
| abstract_inverted_index.conducted | 101 |
| abstract_inverted_index.empirical | 98, 200 |
| abstract_inverted_index.evaluated | 149 |
| abstract_inverted_index.execution | 36 |
| abstract_inverted_index.expensive | 54 |
| abstract_inverted_index.extremely | 51 |
| abstract_inverted_index.frequency | 157 |
| abstract_inverted_index.injection | 59 |
| abstract_inverted_index.laborious | 52 |
| abstract_inverted_index.machines, | 140 |
| abstract_inverted_index.neighbor, | 142 |
| abstract_inverted_index.optimally | 196 |
| abstract_inverted_index.selection | 166, 210 |
| abstract_inverted_index.simulated | 66 |
| abstract_inverted_index.validates | 202 |
| abstract_inverted_index.algorithms | 133 |
| abstract_inverted_index.artificial | 57 |
| abstract_inverted_index.assessment | 49, 90 |
| abstract_inverted_index.bitWeaver, | 113 |
| abstract_inverted_index.categorize | 197 |
| abstract_inverted_index.classifier | 170 |
| abstract_inverted_index.complexity | 40 |
| abstract_inverted_index.controlled | 64 |
| abstract_inverted_index.extraction | 160 |
| abstract_inverted_index.pragmatics | 7 |
| abstract_inverted_index.real-world | 75 |
| abstract_inverted_index.reduction. | 233 |
| abstract_inverted_index.selection. | 247 |
| abstract_inverted_index.supervised | 131 |
| abstract_inverted_index.uniqueness | 42 |
| abstract_inverted_index.(qaManager, | 112 |
| abstract_inverted_index.Classifying | 78 |
| abstract_inverted_index.algorithm). | 181 |
| abstract_inverted_index.application | 46 |
| abstract_inverted_index.classifiers | 219 |
| abstract_inverted_index.exploratory | 187 |
| abstract_inverted_index.multi-layer | 144 |
| abstract_inverted_index.open-source | 110 |
| abstract_inverted_index.outperforms | 215 |
| abstract_inverted_index.perceptron) | 145 |
| abstract_inverted_index.performance | 171 |
| abstract_inverted_index.preliminary | 186 |
| abstract_inverted_index.WebCalendar) | 115 |
| abstract_inverted_index.challenging, | 23 |
| abstract_inverted_index.conventional | 153 |
| abstract_inverted_index.filter-based | 218 |
| abstract_inverted_index.optimization | 177, 207 |
| abstract_inverted_index.environments, | 67 |
| abstract_inverted_index.intelligently | 81 |
| abstract_inverted_index.subsequently, | 163 |
| abstract_inverted_index.(naïve | 134 |
| abstract_inverted_index.classification | 213 |
| abstract_inverted_index.meta-heuristic | 180 |
| abstract_inverted_index.representative | 72 |
| abstract_inverted_index.nature-inspired, | 179 |
| abstract_inverted_index.frequency-inverse | 155 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 94 |
| countries_distinct_count | 4 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.97044449 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |