A partition-based similarity for classification distributions Article Swipe
YOU?
·
· 2020
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2011.06557
Herein we define a measure of similarity between classification distributions that is both principled from the perspective of statistical pattern recognition and useful from the perspective of machine learning practitioners. In particular, we propose a novel similarity on classification distributions, dubbed task similarity, that quantifies how an optimally-transformed optimal representation for a source distribution performs when applied to inference related to a target distribution. The definition of task similarity allows for natural definitions of adversarial and orthogonal distributions. We highlight limiting properties of representations induced by (universally) consistent decision rules and demonstrate in simulation that an empirical estimate of task similarity is a function of the decision rule deployed for inference. We demonstrate that for a given target distribution, both transfer efficiency and semantic similarity of candidate source distributions correlate with empirical task similarity.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2011.06557
- https://arxiv.org/pdf/2011.06557
- OA Status
- green
- Cited By
- 1
- References
- 34
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3105695320
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3105695320Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2011.06557Digital Object Identifier
- Title
-
A partition-based similarity for classification distributionsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2020Year of publication
- Publication date
-
2020-11-12Full publication date if available
- Authors
-
Hayden S. Helm, Ronak Mehta, Brandon Duderstadt, Weiwei Yang, Christopher M. White, Ali Geisa, Joshua T Vogelstein, Carey E. PriebeList of authors in order
- Landing page
-
https://arxiv.org/abs/2011.06557Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2011.06557Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2011.06557Direct OA link when available
- Concepts
-
Similarity (geometry), Inference, Artificial intelligence, Computer science, Probability distribution, Task (project management), Partition (number theory), Representation (politics), Perspective (graphical), Statistical inference, Pattern recognition (psychology), Machine learning, Mathematics, Data mining, Statistics, Political science, Law, Politics, Economics, Management, Combinatorics, Image (mathematics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2022: 1Per-year citation counts (last 5 years)
- References (count)
-
34Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3105695320 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2011.06557 |
| ids.doi | https://doi.org/10.48550/arxiv.2011.06557 |
| ids.mag | 3105695320 |
| ids.openalex | https://openalex.org/W3105695320 |
| fwci | |
| type | preprint |
| title | A partition-based similarity for classification distributions |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11689 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Adversarial Robustness in Machine Learning |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.998199999332428 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11307 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9980000257492065 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Domain Adaptation and Few-Shot Learning |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C103278499 |
| concepts[0].level | 3 |
| concepts[0].score | 0.7381049990653992 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q254465 |
| concepts[0].display_name | Similarity (geometry) |
| concepts[1].id | https://openalex.org/C2776214188 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6304985284805298 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q408386 |
| concepts[1].display_name | Inference |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.6231632232666016 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C41008148 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5345211625099182 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[3].display_name | Computer science |
| concepts[4].id | https://openalex.org/C149441793 |
| concepts[4].level | 2 |
| concepts[4].score | 0.4793027937412262 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q200726 |
| concepts[4].display_name | Probability distribution |
| concepts[5].id | https://openalex.org/C2780451532 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4751400947570801 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q759676 |
| concepts[5].display_name | Task (project management) |
| concepts[6].id | https://openalex.org/C42812 |
| concepts[6].level | 2 |
| concepts[6].score | 0.46228456497192383 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1082910 |
| concepts[6].display_name | Partition (number theory) |
| concepts[7].id | https://openalex.org/C2776359362 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4591308534145355 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[7].display_name | Representation (politics) |
| concepts[8].id | https://openalex.org/C12713177 |
| concepts[8].level | 2 |
| concepts[8].score | 0.45049089193344116 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1900281 |
| concepts[8].display_name | Perspective (graphical) |
| concepts[9].id | https://openalex.org/C134261354 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4302918314933777 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q938438 |
| concepts[9].display_name | Statistical inference |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.4125121235847473 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C119857082 |
| concepts[11].level | 1 |
| concepts[11].score | 0.4034748077392578 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[11].display_name | Machine learning |
| concepts[12].id | https://openalex.org/C33923547 |
| concepts[12].level | 0 |
| concepts[12].score | 0.3733852505683899 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[12].display_name | Mathematics |
| concepts[13].id | https://openalex.org/C124101348 |
| concepts[13].level | 1 |
| concepts[13].score | 0.3305579423904419 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[13].display_name | Data mining |
| concepts[14].id | https://openalex.org/C105795698 |
| concepts[14].level | 1 |
| concepts[14].score | 0.15613213181495667 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[14].display_name | Statistics |
| concepts[15].id | https://openalex.org/C17744445 |
| concepts[15].level | 0 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[15].display_name | Political science |
| concepts[16].id | https://openalex.org/C199539241 |
| concepts[16].level | 1 |
| concepts[16].score | 0.0 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[16].display_name | Law |
| concepts[17].id | https://openalex.org/C94625758 |
| concepts[17].level | 2 |
| concepts[17].score | 0.0 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[17].display_name | Politics |
| concepts[18].id | https://openalex.org/C162324750 |
| concepts[18].level | 0 |
| concepts[18].score | 0.0 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q8134 |
| concepts[18].display_name | Economics |
| concepts[19].id | https://openalex.org/C187736073 |
| concepts[19].level | 1 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q2920921 |
| concepts[19].display_name | Management |
| concepts[20].id | https://openalex.org/C114614502 |
| concepts[20].level | 1 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[20].display_name | Combinatorics |
| concepts[21].id | https://openalex.org/C115961682 |
| concepts[21].level | 2 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q860623 |
| concepts[21].display_name | Image (mathematics) |
| keywords[0].id | https://openalex.org/keywords/similarity |
| keywords[0].score | 0.7381049990653992 |
| keywords[0].display_name | Similarity (geometry) |
| keywords[1].id | https://openalex.org/keywords/inference |
| keywords[1].score | 0.6304985284805298 |
| keywords[1].display_name | Inference |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.6231632232666016 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/computer-science |
| keywords[3].score | 0.5345211625099182 |
| keywords[3].display_name | Computer science |
| keywords[4].id | https://openalex.org/keywords/probability-distribution |
| keywords[4].score | 0.4793027937412262 |
| keywords[4].display_name | Probability distribution |
| keywords[5].id | https://openalex.org/keywords/task |
| keywords[5].score | 0.4751400947570801 |
| keywords[5].display_name | Task (project management) |
| keywords[6].id | https://openalex.org/keywords/partition |
| keywords[6].score | 0.46228456497192383 |
| keywords[6].display_name | Partition (number theory) |
| keywords[7].id | https://openalex.org/keywords/representation |
| keywords[7].score | 0.4591308534145355 |
| keywords[7].display_name | Representation (politics) |
| keywords[8].id | https://openalex.org/keywords/perspective |
| keywords[8].score | 0.45049089193344116 |
| keywords[8].display_name | Perspective (graphical) |
| keywords[9].id | https://openalex.org/keywords/statistical-inference |
| keywords[9].score | 0.4302918314933777 |
| keywords[9].display_name | Statistical inference |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.4125121235847473 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/machine-learning |
| keywords[11].score | 0.4034748077392578 |
| keywords[11].display_name | Machine learning |
| keywords[12].id | https://openalex.org/keywords/mathematics |
| keywords[12].score | 0.3733852505683899 |
| keywords[12].display_name | Mathematics |
| keywords[13].id | https://openalex.org/keywords/data-mining |
| keywords[13].score | 0.3305579423904419 |
| keywords[13].display_name | Data mining |
| keywords[14].id | https://openalex.org/keywords/statistics |
| keywords[14].score | 0.15613213181495667 |
| keywords[14].display_name | Statistics |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2011.06557 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2011.06557 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2011.06557 |
| locations[1].id | doi:10.48550/arxiv.2011.06557 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2011.06557 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5091316872 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-9475-8100 |
| authorships[0].author.display_name | Hayden S. Helm |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Hayden S. Helm |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5001083519 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ronak Mehta |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ronak D. Mehta |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5007090620 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Brandon Duderstadt |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Brandon Duderstadt |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102743275 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-0377-2626 |
| authorships[3].author.display_name | Weiwei Yang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Weiwei Yang |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5103871563 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Christopher M. White |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Christopher M. White |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5055348866 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Ali Geisa |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Ali Geisa |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5065441417 |
| authorships[6].author.orcid | https://orcid.org/0000-0003-2487-6237 |
| authorships[6].author.display_name | Joshua T Vogelstein |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Joshua T. Vogelstein |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5031834098 |
| authorships[7].author.orcid | |
| authorships[7].author.display_name | Carey E. Priebe |
| authorships[7].author_position | last |
| authorships[7].raw_author_name | Carey E. Priebe |
| authorships[7].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2011.06557 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A partition-based similarity for classification distributions |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T11689 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Adversarial Robustness in Machine Learning |
| related_works | https://openalex.org/W2055243143, https://openalex.org/W3161249280, https://openalex.org/W2267059662, https://openalex.org/W137830373, https://openalex.org/W3000984192, https://openalex.org/W2103073163, https://openalex.org/W4286952477, https://openalex.org/W4321348134, https://openalex.org/W4387929287, https://openalex.org/W3195379801 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2022 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2011.06557 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2011.06557 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2011.06557 |
| primary_location.id | pmh:oai:arXiv.org:2011.06557 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2011.06557 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2011.06557 |
| publication_date | 2020-11-12 |
| publication_year | 2020 |
| referenced_works | https://openalex.org/W2493916176, https://openalex.org/W2120240539, https://openalex.org/W3020107144, https://openalex.org/W99485931, https://openalex.org/W2033403400, https://openalex.org/W2920224311, https://openalex.org/W3104240813, https://openalex.org/W2040870580, https://openalex.org/W2109067131, https://openalex.org/W3118608800, https://openalex.org/W3007522628, https://openalex.org/W3030163527, https://openalex.org/W2101234009, https://openalex.org/W1988115241, https://openalex.org/W2161388792, https://openalex.org/W2036043322, https://openalex.org/W2165698076, https://openalex.org/W2120587290, https://openalex.org/W2981848390, https://openalex.org/W2099111195, https://openalex.org/W3036653218, https://openalex.org/W2799061466, https://openalex.org/W2911964244, https://openalex.org/W2948223045, https://openalex.org/W2131479143, https://openalex.org/W2059507684, https://openalex.org/W2963466845, https://openalex.org/W630532510, https://openalex.org/W2990761674, https://openalex.org/W1973682096, https://openalex.org/W2131940723, https://openalex.org/W2295582178, https://openalex.org/W1963110543, https://openalex.org/W2163922914 |
| referenced_works_count | 34 |
| abstract_inverted_index.a | 3, 34, 51, 61, 102, 115 |
| abstract_inverted_index.In | 30 |
| abstract_inverted_index.We | 78, 111 |
| abstract_inverted_index.an | 46, 95 |
| abstract_inverted_index.by | 85 |
| abstract_inverted_index.in | 92 |
| abstract_inverted_index.is | 11, 101 |
| abstract_inverted_index.of | 5, 17, 26, 66, 73, 82, 98, 104, 125 |
| abstract_inverted_index.on | 37 |
| abstract_inverted_index.to | 57, 60 |
| abstract_inverted_index.we | 1, 32 |
| abstract_inverted_index.The | 64 |
| abstract_inverted_index.and | 21, 75, 90, 122 |
| abstract_inverted_index.for | 50, 70, 109, 114 |
| abstract_inverted_index.how | 45 |
| abstract_inverted_index.the | 15, 24, 105 |
| abstract_inverted_index.both | 12, 119 |
| abstract_inverted_index.from | 14, 23 |
| abstract_inverted_index.rule | 107 |
| abstract_inverted_index.task | 41, 67, 99, 132 |
| abstract_inverted_index.that | 10, 43, 94, 113 |
| abstract_inverted_index.when | 55 |
| abstract_inverted_index.with | 130 |
| abstract_inverted_index.given | 116 |
| abstract_inverted_index.novel | 35 |
| abstract_inverted_index.rules | 89 |
| abstract_inverted_index.Herein | 0 |
| abstract_inverted_index.allows | 69 |
| abstract_inverted_index.define | 2 |
| abstract_inverted_index.dubbed | 40 |
| abstract_inverted_index.source | 52, 127 |
| abstract_inverted_index.target | 62, 117 |
| abstract_inverted_index.useful | 22 |
| abstract_inverted_index.applied | 56 |
| abstract_inverted_index.between | 7 |
| abstract_inverted_index.induced | 84 |
| abstract_inverted_index.machine | 27 |
| abstract_inverted_index.measure | 4 |
| abstract_inverted_index.natural | 71 |
| abstract_inverted_index.optimal | 48 |
| abstract_inverted_index.pattern | 19 |
| abstract_inverted_index.propose | 33 |
| abstract_inverted_index.related | 59 |
| abstract_inverted_index.decision | 88, 106 |
| abstract_inverted_index.deployed | 108 |
| abstract_inverted_index.estimate | 97 |
| abstract_inverted_index.function | 103 |
| abstract_inverted_index.learning | 28 |
| abstract_inverted_index.limiting | 80 |
| abstract_inverted_index.performs | 54 |
| abstract_inverted_index.semantic | 123 |
| abstract_inverted_index.transfer | 120 |
| abstract_inverted_index.candidate | 126 |
| abstract_inverted_index.correlate | 129 |
| abstract_inverted_index.empirical | 96, 131 |
| abstract_inverted_index.highlight | 79 |
| abstract_inverted_index.inference | 58 |
| abstract_inverted_index.consistent | 87 |
| abstract_inverted_index.definition | 65 |
| abstract_inverted_index.efficiency | 121 |
| abstract_inverted_index.inference. | 110 |
| abstract_inverted_index.orthogonal | 76 |
| abstract_inverted_index.principled | 13 |
| abstract_inverted_index.properties | 81 |
| abstract_inverted_index.quantifies | 44 |
| abstract_inverted_index.similarity | 6, 36, 68, 100, 124 |
| abstract_inverted_index.simulation | 93 |
| abstract_inverted_index.adversarial | 74 |
| abstract_inverted_index.definitions | 72 |
| abstract_inverted_index.demonstrate | 91, 112 |
| abstract_inverted_index.particular, | 31 |
| abstract_inverted_index.perspective | 16, 25 |
| abstract_inverted_index.recognition | 20 |
| abstract_inverted_index.similarity, | 42 |
| abstract_inverted_index.similarity. | 133 |
| abstract_inverted_index.statistical | 18 |
| abstract_inverted_index.distribution | 53 |
| abstract_inverted_index.(universally) | 86 |
| abstract_inverted_index.distribution, | 118 |
| abstract_inverted_index.distribution. | 63 |
| abstract_inverted_index.distributions | 9, 128 |
| abstract_inverted_index.classification | 8, 38 |
| abstract_inverted_index.distributions, | 39 |
| abstract_inverted_index.distributions. | 77 |
| abstract_inverted_index.practitioners. | 29 |
| abstract_inverted_index.representation | 49 |
| abstract_inverted_index.representations | 83 |
| abstract_inverted_index.optimally-transformed | 47 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 8 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/16 |
| sustainable_development_goals[0].score | 0.75 |
| sustainable_development_goals[0].display_name | Peace, Justice and strong institutions |
| citation_normalized_percentile |