A perfect matching reciprocity method for embedding multiple hypercubes in an augmented cube: Applications to Hamiltonian decomposition and fault-tolerant Hamiltonicity Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2507.12834
This paper focuses on the embeddability of hypercubes in an important class of Cayley graphs, known as augmented cubes. An $n$-dimensional augmented cube $AQ_n$ is constructed by augmenting the $n$-dimensional hypercube $Q_n$ with additional edges, thus making $Q_n$ a spanning subgraph of $AQ_n$. Dong and Wang (2019) first posed the problem of determining the number of $Q_n$-isomorphic subgraphs in $AQ_n$, which still remains open. By exploiting the Cayley properties of $AQ_n$, we establish a lower bound for this number. What's more, we develop a method for constructing pairs of $Q_n$-isomorphic subgraphs in $AQ_n$ with the minimum number of common edges. This is accomplished through the use of reciprocal perfect matchings, a technique that also relies on the Cayley property of $AQ_n$. As an application, we prove that $AQ_n$ admits $n-1$ edge-disjoint Hamiltonian cycles when $n\geq3$ is odd and $n-2$ cycles when $n$ is even, thereby confirming a conjecture by Hung (2015) for the odd case. Additionally, we prove that $AQ_n$ has a fault-free cycle of every even length from $4$ to $2^n$ with up to $4n-8$ faulty edges, when each vertex is incident to at least two fault-free edges. This result not only provides an alternative proof for the fault-tolerant Hamiltonicity of established by Hsieh and Cian (2010), but also extends their work by demonstrating the fault-tolerant bipancyclicity of $AQ_n$.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2507.12834
- https://arxiv.org/pdf/2507.12834
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415309890
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415309890Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2507.12834Digital Object Identifier
- Title
-
A perfect matching reciprocity method for embedding multiple hypercubes in an augmented cube: Applications to Hamiltonian decomposition and fault-tolerant HamiltonicityWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-07-17Full publication date if available
- Authors
-
Da-Wei Yang, Hongyang Zhang, Rong‐Xia Hao, Sun‐Yuan HsiehList of authors in order
- Landing page
-
https://arxiv.org/abs/2507.12834Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2507.12834Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2507.12834Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415309890 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2507.12834 |
| ids.doi | https://doi.org/10.48550/arxiv.2507.12834 |
| ids.openalex | https://openalex.org/W4415309890 |
| fwci | |
| type | preprint |
| title | A perfect matching reciprocity method for embedding multiple hypercubes in an augmented cube: Applications to Hamiltonian decomposition and fault-tolerant Hamiltonicity |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10829 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1705 |
| topics[0].subfield.display_name | Computer Networks and Communications |
| topics[0].display_name | Interconnection Networks and Systems |
| topics[1].id | https://openalex.org/T12288 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.991599977016449 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1705 |
| topics[1].subfield.display_name | Computer Networks and Communications |
| topics[1].display_name | Optimization and Search Problems |
| topics[2].id | https://openalex.org/T10715 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9828000068664551 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1705 |
| topics[2].subfield.display_name | Computer Networks and Communications |
| topics[2].display_name | Distributed and Parallel Computing Systems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2507.12834 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2507.12834 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2507.12834 |
| locations[1].id | doi:10.48550/arxiv.2507.12834 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2507.12834 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5101723645 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Da-Wei Yang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yang, Da-Wei |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5115781231 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-5817-7154 |
| authorships[1].author.display_name | Hongyang Zhang |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Zhang, Hongyang |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5049116158 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-8714-8750 |
| authorships[2].author.display_name | Rong‐Xia Hao |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Hao, Rong-Xia |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5103047340 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-4746-3179 |
| authorships[3].author.display_name | Sun‐Yuan Hsieh |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Hsieh, Sun-Yuan |
| authorships[3].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2507.12834 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-18T00:00:00 |
| display_name | A perfect matching reciprocity method for embedding multiple hypercubes in an augmented cube: Applications to Hamiltonian decomposition and fault-tolerant Hamiltonicity |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10829 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1705 |
| primary_topic.subfield.display_name | Computer Networks and Communications |
| primary_topic.display_name | Interconnection Networks and Systems |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2507.12834 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2507.12834 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2507.12834 |
| primary_location.id | pmh:oai:arXiv.org:2507.12834 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2507.12834 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2507.12834 |
| publication_date | 2025-07-17 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 38, 73, 83, 110, 146, 161 |
| abstract_inverted_index.An | 19 |
| abstract_inverted_index.As | 121 |
| abstract_inverted_index.By | 64 |
| abstract_inverted_index.an | 9, 122, 194 |
| abstract_inverted_index.as | 16 |
| abstract_inverted_index.at | 184 |
| abstract_inverted_index.by | 26, 148, 203, 213 |
| abstract_inverted_index.in | 8, 58, 91 |
| abstract_inverted_index.is | 24, 101, 135, 142, 181 |
| abstract_inverted_index.of | 6, 12, 41, 51, 55, 69, 88, 97, 106, 119, 164, 201, 218 |
| abstract_inverted_index.on | 3, 115 |
| abstract_inverted_index.to | 170, 174, 183 |
| abstract_inverted_index.up | 173 |
| abstract_inverted_index.we | 71, 81, 124, 156 |
| abstract_inverted_index.$4$ | 169 |
| abstract_inverted_index.$n$ | 141 |
| abstract_inverted_index.and | 44, 137, 205 |
| abstract_inverted_index.but | 208 |
| abstract_inverted_index.for | 76, 85, 151, 197 |
| abstract_inverted_index.has | 160 |
| abstract_inverted_index.not | 191 |
| abstract_inverted_index.odd | 136, 153 |
| abstract_inverted_index.the | 4, 28, 49, 53, 66, 94, 104, 116, 152, 198, 215 |
| abstract_inverted_index.two | 186 |
| abstract_inverted_index.use | 105 |
| abstract_inverted_index.Cian | 206 |
| abstract_inverted_index.Dong | 43 |
| abstract_inverted_index.Hung | 149 |
| abstract_inverted_index.This | 0, 100, 189 |
| abstract_inverted_index.Wang | 45 |
| abstract_inverted_index.also | 113, 209 |
| abstract_inverted_index.cube | 22 |
| abstract_inverted_index.each | 179 |
| abstract_inverted_index.even | 166 |
| abstract_inverted_index.from | 168 |
| abstract_inverted_index.only | 192 |
| abstract_inverted_index.that | 112, 126, 158 |
| abstract_inverted_index.this | 77 |
| abstract_inverted_index.thus | 35 |
| abstract_inverted_index.when | 133, 140, 178 |
| abstract_inverted_index.with | 32, 93, 172 |
| abstract_inverted_index.work | 212 |
| abstract_inverted_index.$2^n$ | 171 |
| abstract_inverted_index.$Q_n$ | 31, 37 |
| abstract_inverted_index.$n-1$ | 129 |
| abstract_inverted_index.$n-2$ | 138 |
| abstract_inverted_index.Hsieh | 204 |
| abstract_inverted_index.bound | 75 |
| abstract_inverted_index.case. | 154 |
| abstract_inverted_index.class | 11 |
| abstract_inverted_index.cycle | 163 |
| abstract_inverted_index.even, | 143 |
| abstract_inverted_index.every | 165 |
| abstract_inverted_index.first | 47 |
| abstract_inverted_index.known | 15 |
| abstract_inverted_index.least | 185 |
| abstract_inverted_index.lower | 74 |
| abstract_inverted_index.more, | 80 |
| abstract_inverted_index.open. | 63 |
| abstract_inverted_index.pairs | 87 |
| abstract_inverted_index.paper | 1 |
| abstract_inverted_index.posed | 48 |
| abstract_inverted_index.proof | 196 |
| abstract_inverted_index.prove | 125, 157 |
| abstract_inverted_index.still | 61 |
| abstract_inverted_index.their | 211 |
| abstract_inverted_index.which | 60 |
| abstract_inverted_index.$4n-8$ | 175 |
| abstract_inverted_index.$AQ_n$ | 23, 92, 127, 159 |
| abstract_inverted_index.(2015) | 150 |
| abstract_inverted_index.(2019) | 46 |
| abstract_inverted_index.Cayley | 13, 67, 117 |
| abstract_inverted_index.What's | 79 |
| abstract_inverted_index.admits | 128 |
| abstract_inverted_index.common | 98 |
| abstract_inverted_index.cubes. | 18 |
| abstract_inverted_index.cycles | 132, 139 |
| abstract_inverted_index.edges, | 34, 177 |
| abstract_inverted_index.edges. | 99, 188 |
| abstract_inverted_index.faulty | 176 |
| abstract_inverted_index.length | 167 |
| abstract_inverted_index.making | 36 |
| abstract_inverted_index.method | 84 |
| abstract_inverted_index.number | 54, 96 |
| abstract_inverted_index.relies | 114 |
| abstract_inverted_index.result | 190 |
| abstract_inverted_index.vertex | 180 |
| abstract_inverted_index.$AQ_n$, | 59, 70 |
| abstract_inverted_index.$AQ_n$. | 42, 120, 219 |
| abstract_inverted_index.(2010), | 207 |
| abstract_inverted_index.develop | 82 |
| abstract_inverted_index.extends | 210 |
| abstract_inverted_index.focuses | 2 |
| abstract_inverted_index.graphs, | 14 |
| abstract_inverted_index.minimum | 95 |
| abstract_inverted_index.number. | 78 |
| abstract_inverted_index.perfect | 108 |
| abstract_inverted_index.problem | 50 |
| abstract_inverted_index.remains | 62 |
| abstract_inverted_index.thereby | 144 |
| abstract_inverted_index.through | 103 |
| abstract_inverted_index.$n\geq3$ | 134 |
| abstract_inverted_index.incident | 182 |
| abstract_inverted_index.property | 118 |
| abstract_inverted_index.provides | 193 |
| abstract_inverted_index.spanning | 39 |
| abstract_inverted_index.subgraph | 40 |
| abstract_inverted_index.augmented | 17, 21 |
| abstract_inverted_index.establish | 72 |
| abstract_inverted_index.hypercube | 30 |
| abstract_inverted_index.important | 10 |
| abstract_inverted_index.subgraphs | 57, 90 |
| abstract_inverted_index.technique | 111 |
| abstract_inverted_index.additional | 33 |
| abstract_inverted_index.augmenting | 27 |
| abstract_inverted_index.confirming | 145 |
| abstract_inverted_index.conjecture | 147 |
| abstract_inverted_index.exploiting | 65 |
| abstract_inverted_index.fault-free | 162, 187 |
| abstract_inverted_index.hypercubes | 7 |
| abstract_inverted_index.matchings, | 109 |
| abstract_inverted_index.properties | 68 |
| abstract_inverted_index.reciprocal | 107 |
| abstract_inverted_index.Hamiltonian | 131 |
| abstract_inverted_index.alternative | 195 |
| abstract_inverted_index.constructed | 25 |
| abstract_inverted_index.determining | 52 |
| abstract_inverted_index.established | 202 |
| abstract_inverted_index.accomplished | 102 |
| abstract_inverted_index.application, | 123 |
| abstract_inverted_index.constructing | 86 |
| abstract_inverted_index.Additionally, | 155 |
| abstract_inverted_index.Hamiltonicity | 200 |
| abstract_inverted_index.demonstrating | 214 |
| abstract_inverted_index.edge-disjoint | 130 |
| abstract_inverted_index.embeddability | 5 |
| abstract_inverted_index.bipancyclicity | 217 |
| abstract_inverted_index.fault-tolerant | 199, 216 |
| abstract_inverted_index.$n$-dimensional | 20, 29 |
| abstract_inverted_index.$Q_n$-isomorphic | 56, 89 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |