A physics-augmented neural network framework for modeling and detecting thermo-visco-plastic behavior Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2512.09284
Although considerable attention has been devoted to the development of models for isothermal, rate-independent plasticity, many high-consequence performance assessments involve viscoplastic processes that generate substantial heat. In addition, materials may transit from a nearly isothermal, rate-independent regime to a viscous, temperature-dependent regime during these processes, which makes modeling more challenging. In this work, we develop a physics-augmented neural network (PANN) framework for modeling general temperature-dependent, rate-dependent inelastic processes firmly based on physical principles, including the second law of thermodynamics and coordinate equivariance. These embedded properties are enabled by a number of architectural innovations in the structure and training of an input convex and potential-based neural ordinary differential equation framework. The resulting neural network models are capable of representing a wide spectrum of rate- and temperature-dependence ranging from isothermal, rate-independent elastic-plastic phenomenology to rate-dependent fully viscous inelastic behavior, as we demonstrate. We also show that the framework is capable of modeling complex microstructural inelasticity and predicting the conversion of plastic work to heating when calibrated to stress-temperature observations.
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2512.09284
- https://arxiv.org/pdf/2512.09284
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4417290391
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4417290391Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2512.09284Digital Object Identifier
- Title
-
A physics-augmented neural network framework for modeling and detecting thermo-visco-plastic behaviorWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-12-10Full publication date if available
- Authors
-
Reese E. Jones, Asghar Jadoon, Daniel Seidl, Jan N. FuhgList of authors in order
- Landing page
-
https://arxiv.org/abs/2512.09284Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2512.09284Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2512.09284Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4417290391 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2512.09284 |
| ids.doi | https://doi.org/10.48550/arxiv.2512.09284 |
| ids.openalex | https://openalex.org/W4417290391 |
| fwci | |
| type | preprint |
| title | A physics-augmented neural network framework for modeling and detecting thermo-visco-plastic behavior |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2512.09284 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://arxiv.org/pdf/2512.09284 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2512.09284 |
| locations[1].id | doi:10.48550/arxiv.2512.09284 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2512.09284 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5075985796 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-2332-6279 |
| authorships[0].author.display_name | Reese E. Jones |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Jones, Reese E. |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113348513 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Asghar Jadoon |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Jadoon, Asghar |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5020480385 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-4579-2676 |
| authorships[2].author.display_name | Daniel Seidl |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Seidl, D. Thomas |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5058627053 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-5986-3770 |
| authorships[3].author.display_name | Jan N. Fuhg |
| authorships[3].author_position | last |
| authorships[3].raw_author_name | Fuhg, Jan N. |
| authorships[3].is_corresponding | False |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2512.09284 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-12-12T00:00:00 |
| display_name | A physics-augmented neural network framework for modeling and detecting thermo-visco-plastic behavior |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-12-13T09:19:00.532203 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2512.09284 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2512.09284 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2512.09284 |
| primary_location.id | pmh:oai:arXiv.org:2512.09284 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://arxiv.org/pdf/2512.09284 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2512.09284 |
| publication_date | 2025-12-10 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 32, 38, 55, 88, 118 |
| abstract_inverted_index.In | 26, 50 |
| abstract_inverted_index.We | 140 |
| abstract_inverted_index.an | 99 |
| abstract_inverted_index.as | 137 |
| abstract_inverted_index.by | 87 |
| abstract_inverted_index.in | 93 |
| abstract_inverted_index.is | 146 |
| abstract_inverted_index.of | 9, 77, 90, 98, 116, 121, 148, 157 |
| abstract_inverted_index.on | 70 |
| abstract_inverted_index.to | 6, 37, 131, 160, 164 |
| abstract_inverted_index.we | 53, 138 |
| abstract_inverted_index.The | 109 |
| abstract_inverted_index.and | 79, 96, 102, 123, 153 |
| abstract_inverted_index.are | 85, 114 |
| abstract_inverted_index.for | 11, 61 |
| abstract_inverted_index.has | 3 |
| abstract_inverted_index.law | 76 |
| abstract_inverted_index.may | 29 |
| abstract_inverted_index.the | 7, 74, 94, 144, 155 |
| abstract_inverted_index.also | 141 |
| abstract_inverted_index.been | 4 |
| abstract_inverted_index.from | 31, 126 |
| abstract_inverted_index.many | 15 |
| abstract_inverted_index.more | 48 |
| abstract_inverted_index.show | 142 |
| abstract_inverted_index.that | 22, 143 |
| abstract_inverted_index.this | 51 |
| abstract_inverted_index.when | 162 |
| abstract_inverted_index.wide | 119 |
| abstract_inverted_index.work | 159 |
| abstract_inverted_index.These | 82 |
| abstract_inverted_index.based | 69 |
| abstract_inverted_index.fully | 133 |
| abstract_inverted_index.heat. | 25 |
| abstract_inverted_index.input | 100 |
| abstract_inverted_index.makes | 46 |
| abstract_inverted_index.rate- | 122 |
| abstract_inverted_index.these | 43 |
| abstract_inverted_index.which | 45 |
| abstract_inverted_index.work, | 52 |
| abstract_inverted_index.(PANN) | 59 |
| abstract_inverted_index.convex | 101 |
| abstract_inverted_index.during | 42 |
| abstract_inverted_index.firmly | 68 |
| abstract_inverted_index.models | 10, 113 |
| abstract_inverted_index.nearly | 33 |
| abstract_inverted_index.neural | 57, 104, 111 |
| abstract_inverted_index.number | 89 |
| abstract_inverted_index.regime | 36, 41 |
| abstract_inverted_index.second | 75 |
| abstract_inverted_index.capable | 115, 147 |
| abstract_inverted_index.complex | 150 |
| abstract_inverted_index.develop | 54 |
| abstract_inverted_index.devoted | 5 |
| abstract_inverted_index.enabled | 86 |
| abstract_inverted_index.general | 63 |
| abstract_inverted_index.heating | 161 |
| abstract_inverted_index.involve | 19 |
| abstract_inverted_index.network | 58, 112 |
| abstract_inverted_index.plastic | 158 |
| abstract_inverted_index.ranging | 125 |
| abstract_inverted_index.transit | 30 |
| abstract_inverted_index.viscous | 134 |
| abstract_inverted_index.Although | 0 |
| abstract_inverted_index.embedded | 83 |
| abstract_inverted_index.equation | 107 |
| abstract_inverted_index.generate | 23 |
| abstract_inverted_index.modeling | 47, 62, 149 |
| abstract_inverted_index.ordinary | 105 |
| abstract_inverted_index.physical | 71 |
| abstract_inverted_index.spectrum | 120 |
| abstract_inverted_index.training | 97 |
| abstract_inverted_index.viscous, | 39 |
| abstract_inverted_index.addition, | 27 |
| abstract_inverted_index.attention | 2 |
| abstract_inverted_index.behavior, | 136 |
| abstract_inverted_index.framework | 60, 145 |
| abstract_inverted_index.including | 73 |
| abstract_inverted_index.inelastic | 66, 135 |
| abstract_inverted_index.materials | 28 |
| abstract_inverted_index.processes | 21, 67 |
| abstract_inverted_index.resulting | 110 |
| abstract_inverted_index.structure | 95 |
| abstract_inverted_index.calibrated | 163 |
| abstract_inverted_index.conversion | 156 |
| abstract_inverted_index.coordinate | 80 |
| abstract_inverted_index.framework. | 108 |
| abstract_inverted_index.predicting | 154 |
| abstract_inverted_index.processes, | 44 |
| abstract_inverted_index.properties | 84 |
| abstract_inverted_index.assessments | 18 |
| abstract_inverted_index.development | 8 |
| abstract_inverted_index.innovations | 92 |
| abstract_inverted_index.isothermal, | 12, 34, 127 |
| abstract_inverted_index.performance | 17 |
| abstract_inverted_index.plasticity, | 14 |
| abstract_inverted_index.principles, | 72 |
| abstract_inverted_index.substantial | 24 |
| abstract_inverted_index.challenging. | 49 |
| abstract_inverted_index.considerable | 1 |
| abstract_inverted_index.demonstrate. | 139 |
| abstract_inverted_index.differential | 106 |
| abstract_inverted_index.inelasticity | 152 |
| abstract_inverted_index.representing | 117 |
| abstract_inverted_index.viscoplastic | 20 |
| abstract_inverted_index.architectural | 91 |
| abstract_inverted_index.equivariance. | 81 |
| abstract_inverted_index.observations. | 166 |
| abstract_inverted_index.phenomenology | 130 |
| abstract_inverted_index.rate-dependent | 65, 132 |
| abstract_inverted_index.thermodynamics | 78 |
| abstract_inverted_index.elastic-plastic | 129 |
| abstract_inverted_index.microstructural | 151 |
| abstract_inverted_index.potential-based | 103 |
| abstract_inverted_index.high-consequence | 16 |
| abstract_inverted_index.rate-independent | 13, 35, 128 |
| abstract_inverted_index.physics-augmented | 56 |
| abstract_inverted_index.stress-temperature | 165 |
| abstract_inverted_index.temperature-dependent | 40 |
| abstract_inverted_index.temperature-dependence | 124 |
| abstract_inverted_index.temperature-dependent, | 64 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 4 |
| citation_normalized_percentile |