A Portable and Scalable Genomic Analysis Pipeline forStreptococcus pneumoniaeSurveillance: GPS Pipeline Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1101/2024.11.27.625679
Ever increasing global sequencing capacity provides an unprecedented opportunity in utilising genomic information captured from whole-genome sequencing to enhance pathogen surveillance. However, there is a growing need for developing user-friendly tools to effectively analyse the increasing volume of data. To meet this need, we have developed a genomic analysis pipeline, GPS Pipeline, which is portable and scalable to analyse genomes of Streptococcus pneumoniae , a major bacterial pathogen that is estimated to cause 317,000 child deaths worldwide every year. The GPS Pipeline is based on Nextflow and containerisation technology, and designed to enable researchers generating public health relevant output, including in silico serotypes, pneumococcal lineages (i.e. GPSCs), multilocus sequence types, and antimicrobial susceptibilities against 20 commonly used antibiotics,with minimal software setup requirements and bioinformatic expertise, in order to analyse genomic data at scale with ease. The GPS Pipeline provides a streamlined workflow that improves responsiveness in genomic surveillance on pneumococci. Data Summary The GPS Pipeline is available on GitHub at github.com/GlobalPneumoSeq/gps-pipeline . Published data from the GPS Database is available on Monocle Data Viewer at data.monocle.sanger.ac.uk and associated sequence read files are searchable and downloadable in the European Nucleotide Archive at ebi.ac.uk/ena via their ERR accession numbers. Impact Statement The GPS Pipeline advances global genomic surveillance of Streptococcus pneumoniae by providing a scalable, portable, and user-friendly tool for analysing whole-genome sequencing data. Leveraging Nextflow and containerisation technology, it minimises bioinformatics expertise requirements and infrastructure needs, making it particularly valuable in low- and middle-income countries where pneumococcal disease burden is high. This pipeline ensures reproducibility and stability across platforms, facilitating rapid and accurate pneumococci genomic analysis. By streamlining data processing, the GPS Pipeline enhances pathogen surveillance, generates evidence to support vaccine strategy development, and empowers researchers worldwide, ultimately contributing to improved public health outcomes.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2024.11.27.625679
- https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdf
- OA Status
- green
- Cited By
- 2
- References
- 45
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404886028
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404886028Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2024.11.27.625679Digital Object Identifier
- Title
-
A Portable and Scalable Genomic Analysis Pipeline forStreptococcus pneumoniaeSurveillance: GPS PipelineWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-11-29Full publication date if available
- Authors
-
Harry C. H. Hung, Narender Kumar, Victoria Dyster, Corin Yeats, Benjamin J. Metcalf, Yuan Li, Paulina A. Hawkins, Lesley McGee, Stephen D. Bentley, Stephanie W. LoList of authors in order
- Landing page
-
https://doi.org/10.1101/2024.11.27.625679Publisher landing page
- PDF URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdfDirect OA link when available
- Concepts
-
Pipeline (software), Global Positioning System, Scalability, Streptococcus pneumoniae, Computer science, Computational biology, Biology, Operating system, Genetics, BacteriaTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 2Per-year citation counts (last 5 years)
- References (count)
-
45Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404886028 |
|---|---|
| doi | https://doi.org/10.1101/2024.11.27.625679 |
| ids.doi | https://doi.org/10.1101/2024.11.27.625679 |
| ids.openalex | https://openalex.org/W4404886028 |
| fwci | 1.84310621 |
| type | preprint |
| title | A Portable and Scalable Genomic Analysis Pipeline forStreptococcus pneumoniaeSurveillance: GPS Pipeline |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10654 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9922999739646912 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2713 |
| topics[0].subfield.display_name | Epidemiology |
| topics[0].display_name | Pneumonia and Respiratory Infections |
| topics[1].id | https://openalex.org/T10873 |
| topics[1].field.id | https://openalex.org/fields/24 |
| topics[1].field.display_name | Immunology and Microbiology |
| topics[1].score | 0.9222999811172485 |
| topics[1].domain.id | https://openalex.org/domains/1 |
| topics[1].domain.display_name | Life Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2404 |
| topics[1].subfield.display_name | Microbiology |
| topics[1].display_name | Bacterial Infections and Vaccines |
| topics[2].id | https://openalex.org/T11243 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9086999893188477 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2713 |
| topics[2].subfield.display_name | Epidemiology |
| topics[2].display_name | Respiratory viral infections research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C43521106 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7841087579727173 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2165493 |
| concepts[0].display_name | Pipeline (software) |
| concepts[1].id | https://openalex.org/C60229501 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6159129738807678 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q18822 |
| concepts[1].display_name | Global Positioning System |
| concepts[2].id | https://openalex.org/C48044578 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6111114025115967 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q727490 |
| concepts[2].display_name | Scalability |
| concepts[3].id | https://openalex.org/C2781253189 |
| concepts[3].level | 3 |
| concepts[3].score | 0.5387284755706787 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q221179 |
| concepts[3].display_name | Streptococcus pneumoniae |
| concepts[4].id | https://openalex.org/C41008148 |
| concepts[4].level | 0 |
| concepts[4].score | 0.4819502532482147 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[4].display_name | Computer science |
| concepts[5].id | https://openalex.org/C70721500 |
| concepts[5].level | 1 |
| concepts[5].score | 0.41367191076278687 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q177005 |
| concepts[5].display_name | Computational biology |
| concepts[6].id | https://openalex.org/C86803240 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2307814359664917 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[6].display_name | Biology |
| concepts[7].id | https://openalex.org/C111919701 |
| concepts[7].level | 1 |
| concepts[7].score | 0.17856556177139282 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[7].display_name | Operating system |
| concepts[8].id | https://openalex.org/C54355233 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16383403539657593 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[8].display_name | Genetics |
| concepts[9].id | https://openalex.org/C523546767 |
| concepts[9].level | 2 |
| concepts[9].score | 0.13325616717338562 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q10876 |
| concepts[9].display_name | Bacteria |
| keywords[0].id | https://openalex.org/keywords/pipeline |
| keywords[0].score | 0.7841087579727173 |
| keywords[0].display_name | Pipeline (software) |
| keywords[1].id | https://openalex.org/keywords/global-positioning-system |
| keywords[1].score | 0.6159129738807678 |
| keywords[1].display_name | Global Positioning System |
| keywords[2].id | https://openalex.org/keywords/scalability |
| keywords[2].score | 0.6111114025115967 |
| keywords[2].display_name | Scalability |
| keywords[3].id | https://openalex.org/keywords/streptococcus-pneumoniae |
| keywords[3].score | 0.5387284755706787 |
| keywords[3].display_name | Streptococcus pneumoniae |
| keywords[4].id | https://openalex.org/keywords/computer-science |
| keywords[4].score | 0.4819502532482147 |
| keywords[4].display_name | Computer science |
| keywords[5].id | https://openalex.org/keywords/computational-biology |
| keywords[5].score | 0.41367191076278687 |
| keywords[5].display_name | Computational biology |
| keywords[6].id | https://openalex.org/keywords/biology |
| keywords[6].score | 0.2307814359664917 |
| keywords[6].display_name | Biology |
| keywords[7].id | https://openalex.org/keywords/operating-system |
| keywords[7].score | 0.17856556177139282 |
| keywords[7].display_name | Operating system |
| keywords[8].id | https://openalex.org/keywords/genetics |
| keywords[8].score | 0.16383403539657593 |
| keywords[8].display_name | Genetics |
| keywords[9].id | https://openalex.org/keywords/bacteria |
| keywords[9].score | 0.13325616717338562 |
| keywords[9].display_name | Bacteria |
| language | en |
| locations[0].id | doi:10.1101/2024.11.27.625679 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2024.11.27.625679 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5108706458 |
| authorships[0].author.orcid | https://orcid.org/0009-0005-3857-5242 |
| authorships[0].author.display_name | Harry C. H. Hung |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[0].affiliations[0].raw_affiliation_string | Wellcome Sanger Institute |
| authorships[0].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[0].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[0].institutions[0].type | nonprofit |
| authorships[0].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Harry C. H. Hung |
| authorships[0].is_corresponding | True |
| authorships[0].raw_affiliation_strings | Wellcome Sanger Institute |
| authorships[1].author.id | https://openalex.org/A5061917831 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2089-9626 |
| authorships[1].author.display_name | Narender Kumar |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[1].affiliations[0].raw_affiliation_string | Wellcome Sanger Institute |
| authorships[1].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[1].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[1].institutions[0].type | nonprofit |
| authorships[1].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Narender Kumar |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Wellcome Sanger Institute |
| authorships[2].author.id | https://openalex.org/A5102043839 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Victoria Dyster |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[2].affiliations[0].raw_affiliation_string | Wellcome Sanger Institute |
| authorships[2].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[2].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[2].institutions[0].type | nonprofit |
| authorships[2].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Victoria Dyster |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Wellcome Sanger Institute |
| authorships[3].author.id | https://openalex.org/A5070093541 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-0080-6242 |
| authorships[3].author.display_name | Corin Yeats |
| authorships[3].affiliations[0].raw_affiliation_string | Pandemic Sciences Institute |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Corin Yeats |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Pandemic Sciences Institute |
| authorships[4].author.id | https://openalex.org/A5056124121 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-9628-2051 |
| authorships[4].author.display_name | Benjamin J. Metcalf |
| authorships[4].affiliations[0].raw_affiliation_string | Centers for Disease Control and Prevention |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Benjamin Metcalf |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Centers for Disease Control and Prevention |
| authorships[5].author.id | https://openalex.org/A5108577027 |
| authorships[5].author.orcid | |
| authorships[5].author.display_name | Yuan Li |
| authorships[5].affiliations[0].raw_affiliation_string | Centers for Disease Control and Prevention |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Yuan Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Centers for Disease Control and Prevention |
| authorships[6].author.id | https://openalex.org/A5079452871 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-5096-392X |
| authorships[6].author.display_name | Paulina A. Hawkins |
| authorships[6].affiliations[0].raw_affiliation_string | Centers for Disease Control and Prevention |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Paulina A. Hawkins |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Centers for Disease Control and Prevention |
| authorships[7].author.id | https://openalex.org/A5031763725 |
| authorships[7].author.orcid | https://orcid.org/0000-0001-8214-921X |
| authorships[7].author.display_name | Lesley McGee |
| authorships[7].affiliations[0].raw_affiliation_string | Centers for Disease Control and Prevention |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Lesley McGee |
| authorships[7].is_corresponding | False |
| authorships[7].raw_affiliation_strings | Centers for Disease Control and Prevention |
| authorships[8].author.id | https://openalex.org/A5077742706 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-8094-3751 |
| authorships[8].author.display_name | Stephen D. Bentley |
| authorships[8].countries | GB |
| authorships[8].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[8].affiliations[0].raw_affiliation_string | Wellcome Sanger Institute |
| authorships[8].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[8].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[8].institutions[0].type | nonprofit |
| authorships[8].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[8].institutions[0].country_code | GB |
| authorships[8].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Stephen D. Bentley |
| authorships[8].is_corresponding | False |
| authorships[8].raw_affiliation_strings | Wellcome Sanger Institute |
| authorships[9].author.id | https://openalex.org/A5022302563 |
| authorships[9].author.orcid | https://orcid.org/0000-0002-2182-0222 |
| authorships[9].author.display_name | Stephanie W. Lo |
| authorships[9].countries | GB |
| authorships[9].affiliations[0].institution_ids | https://openalex.org/I2802476451 |
| authorships[9].affiliations[0].raw_affiliation_string | Wellcome Sanger Institute |
| authorships[9].institutions[0].id | https://openalex.org/I2802476451 |
| authorships[9].institutions[0].ror | https://ror.org/05cy4wa09 |
| authorships[9].institutions[0].type | nonprofit |
| authorships[9].institutions[0].lineage | https://openalex.org/I2802476451, https://openalex.org/I87048295 |
| authorships[9].institutions[0].country_code | GB |
| authorships[9].institutions[0].display_name | Wellcome Sanger Institute |
| authorships[9].author_position | last |
| authorships[9].raw_author_name | Stephanie W. Lo |
| authorships[9].is_corresponding | False |
| authorships[9].raw_affiliation_strings | Wellcome Sanger Institute |
| has_content.pdf | True |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-12-01T00:00:00 |
| display_name | A Portable and Scalable Genomic Analysis Pipeline forStreptococcus pneumoniaeSurveillance: GPS Pipeline |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10654 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9922999739646912 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2713 |
| primary_topic.subfield.display_name | Epidemiology |
| primary_topic.display_name | Pneumonia and Respiratory Infections |
| related_works | https://openalex.org/W5726709, https://openalex.org/W3162200841, https://openalex.org/W2586280620, https://openalex.org/W2805505483, https://openalex.org/W2334071950, https://openalex.org/W2384744344, https://openalex.org/W4233932308, https://openalex.org/W1799694159, https://openalex.org/W2393169196, https://openalex.org/W2366610330 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 2 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2024.11.27.625679 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2024.11.27.625679 |
| primary_location.id | doi:10.1101/2024.11.27.625679 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.biorxiv.org/content/biorxiv/early/2024/11/29/2024.11.27.625679.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2024.11.27.625679 |
| publication_date | 2024-11-29 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3163844235, https://openalex.org/W4311671367, https://openalex.org/W3186119940, https://openalex.org/W2955137821, https://openalex.org/W2515546166, https://openalex.org/W3046929726, https://openalex.org/W2937635380, https://openalex.org/W3162760699, https://openalex.org/W2605897695, https://openalex.org/W2296335794, https://openalex.org/W2613409207, https://openalex.org/W2951912016, https://openalex.org/W2990618091, https://openalex.org/W3131055609, https://openalex.org/W2808352813, https://openalex.org/W2952167528, https://openalex.org/W3036135788, https://openalex.org/W2160969485, https://openalex.org/W4399296544, https://openalex.org/W2949236085, https://openalex.org/W2952568525, https://openalex.org/W4388862175, https://openalex.org/W2952620784, https://openalex.org/W2749092259, https://openalex.org/W2950006954, https://openalex.org/W2129744420, https://openalex.org/W2014286596, https://openalex.org/W2559822590, https://openalex.org/W2520501427, https://openalex.org/W2432197333, https://openalex.org/W2159935355, https://openalex.org/W3013409026, https://openalex.org/W1456171542, https://openalex.org/W1564899713, https://openalex.org/W2128366978, https://openalex.org/W2084439217, https://openalex.org/W2167394433, https://openalex.org/W2109919876, https://openalex.org/W2168067188, https://openalex.org/W2165669844, https://openalex.org/W3205095382, https://openalex.org/W2992661676, https://openalex.org/W2046761482, https://openalex.org/W3012519116, https://openalex.org/W2055952697 |
| referenced_works_count | 45 |
| abstract_inverted_index., | 64 |
| abstract_inverted_index.. | 162 |
| abstract_inverted_index.a | 25, 47, 65, 140, 212 |
| abstract_inverted_index.20 | 115 |
| abstract_inverted_index.By | 266 |
| abstract_inverted_index.To | 40 |
| abstract_inverted_index.an | 7 |
| abstract_inverted_index.at | 132, 160, 175, 191 |
| abstract_inverted_index.by | 210 |
| abstract_inverted_index.in | 10, 101, 126, 146, 186, 240 |
| abstract_inverted_index.is | 24, 54, 70, 83, 156, 169, 249 |
| abstract_inverted_index.it | 228, 237 |
| abstract_inverted_index.of | 38, 61, 207 |
| abstract_inverted_index.on | 85, 149, 158, 171 |
| abstract_inverted_index.to | 18, 32, 58, 72, 92, 128, 278, 289 |
| abstract_inverted_index.we | 44 |
| abstract_inverted_index.ERR | 195 |
| abstract_inverted_index.GPS | 51, 81, 137, 154, 167, 201, 271 |
| abstract_inverted_index.The | 80, 136, 153, 200 |
| abstract_inverted_index.and | 56, 87, 90, 111, 123, 177, 184, 215, 225, 233, 242, 255, 261, 283 |
| abstract_inverted_index.are | 182 |
| abstract_inverted_index.for | 28, 218 |
| abstract_inverted_index.the | 35, 166, 187, 270 |
| abstract_inverted_index.via | 193 |
| abstract_inverted_index.Data | 151, 173 |
| abstract_inverted_index.Ever | 1 |
| abstract_inverted_index.This | 251 |
| abstract_inverted_index.data | 131, 164, 268 |
| abstract_inverted_index.from | 15, 165 |
| abstract_inverted_index.have | 45 |
| abstract_inverted_index.low- | 241 |
| abstract_inverted_index.meet | 41 |
| abstract_inverted_index.need | 27 |
| abstract_inverted_index.read | 180 |
| abstract_inverted_index.that | 69, 143 |
| abstract_inverted_index.this | 42 |
| abstract_inverted_index.tool | 217 |
| abstract_inverted_index.used | 117 |
| abstract_inverted_index.with | 134 |
| abstract_inverted_index.(i.e. | 106 |
| abstract_inverted_index.based | 84 |
| abstract_inverted_index.cause | 73 |
| abstract_inverted_index.child | 75 |
| abstract_inverted_index.data. | 39, 222 |
| abstract_inverted_index.ease. | 135 |
| abstract_inverted_index.every | 78 |
| abstract_inverted_index.files | 181 |
| abstract_inverted_index.high. | 250 |
| abstract_inverted_index.major | 66 |
| abstract_inverted_index.need, | 43 |
| abstract_inverted_index.order | 127 |
| abstract_inverted_index.rapid | 260 |
| abstract_inverted_index.scale | 133 |
| abstract_inverted_index.setup | 121 |
| abstract_inverted_index.their | 194 |
| abstract_inverted_index.there | 23 |
| abstract_inverted_index.tools | 31 |
| abstract_inverted_index.where | 245 |
| abstract_inverted_index.which | 53 |
| abstract_inverted_index.year. | 79 |
| abstract_inverted_index.GitHub | 159 |
| abstract_inverted_index.Impact | 198 |
| abstract_inverted_index.Viewer | 174 |
| abstract_inverted_index.across | 257 |
| abstract_inverted_index.burden | 248 |
| abstract_inverted_index.deaths | 76 |
| abstract_inverted_index.enable | 93 |
| abstract_inverted_index.global | 3, 204 |
| abstract_inverted_index.health | 97, 292 |
| abstract_inverted_index.making | 236 |
| abstract_inverted_index.needs, | 235 |
| abstract_inverted_index.public | 96, 291 |
| abstract_inverted_index.silico | 102 |
| abstract_inverted_index.types, | 110 |
| abstract_inverted_index.volume | 37 |
| abstract_inverted_index.317,000 | 74 |
| abstract_inverted_index.Archive | 190 |
| abstract_inverted_index.GPSCs), | 107 |
| abstract_inverted_index.Monocle | 172 |
| abstract_inverted_index.Summary | 152 |
| abstract_inverted_index.against | 114 |
| abstract_inverted_index.analyse | 34, 59, 129 |
| abstract_inverted_index.disease | 247 |
| abstract_inverted_index.enhance | 19 |
| abstract_inverted_index.ensures | 253 |
| abstract_inverted_index.genomes | 60 |
| abstract_inverted_index.genomic | 12, 48, 130, 147, 205, 264 |
| abstract_inverted_index.growing | 26 |
| abstract_inverted_index.minimal | 119 |
| abstract_inverted_index.output, | 99 |
| abstract_inverted_index.support | 279 |
| abstract_inverted_index.vaccine | 280 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Database | 168 |
| abstract_inverted_index.European | 188 |
| abstract_inverted_index.However, | 22 |
| abstract_inverted_index.Nextflow | 86, 224 |
| abstract_inverted_index.Pipeline | 82, 138, 155, 202, 272 |
| abstract_inverted_index.accurate | 262 |
| abstract_inverted_index.advances | 203 |
| abstract_inverted_index.analysis | 49 |
| abstract_inverted_index.capacity | 5 |
| abstract_inverted_index.captured | 14 |
| abstract_inverted_index.commonly | 116 |
| abstract_inverted_index.designed | 91 |
| abstract_inverted_index.empowers | 284 |
| abstract_inverted_index.enhances | 273 |
| abstract_inverted_index.evidence | 277 |
| abstract_inverted_index.improved | 290 |
| abstract_inverted_index.improves | 144 |
| abstract_inverted_index.lineages | 105 |
| abstract_inverted_index.numbers. | 197 |
| abstract_inverted_index.pathogen | 20, 68, 274 |
| abstract_inverted_index.pipeline | 252 |
| abstract_inverted_index.portable | 55 |
| abstract_inverted_index.provides | 6, 139 |
| abstract_inverted_index.relevant | 98 |
| abstract_inverted_index.scalable | 57 |
| abstract_inverted_index.sequence | 109, 179 |
| abstract_inverted_index.software | 120 |
| abstract_inverted_index.strategy | 281 |
| abstract_inverted_index.valuable | 239 |
| abstract_inverted_index.workflow | 142 |
| abstract_inverted_index.Pipeline, | 52 |
| abstract_inverted_index.Published | 163 |
| abstract_inverted_index.Statement | 199 |
| abstract_inverted_index.accession | 196 |
| abstract_inverted_index.analysing | 219 |
| abstract_inverted_index.analysis. | 265 |
| abstract_inverted_index.available | 157, 170 |
| abstract_inverted_index.bacterial | 67 |
| abstract_inverted_index.countries | 244 |
| abstract_inverted_index.developed | 46 |
| abstract_inverted_index.estimated | 71 |
| abstract_inverted_index.expertise | 231 |
| abstract_inverted_index.generates | 276 |
| abstract_inverted_index.including | 100 |
| abstract_inverted_index.minimises | 229 |
| abstract_inverted_index.outcomes. | 293 |
| abstract_inverted_index.pipeline, | 50 |
| abstract_inverted_index.portable, | 214 |
| abstract_inverted_index.providing | 211 |
| abstract_inverted_index.scalable, | 213 |
| abstract_inverted_index.stability | 256 |
| abstract_inverted_index.utilising | 11 |
| abstract_inverted_index.worldwide | 77 |
| abstract_inverted_index.Leveraging | 223 |
| abstract_inverted_index.Nucleotide | 189 |
| abstract_inverted_index.associated | 178 |
| abstract_inverted_index.developing | 29 |
| abstract_inverted_index.expertise, | 125 |
| abstract_inverted_index.generating | 95 |
| abstract_inverted_index.increasing | 2, 36 |
| abstract_inverted_index.multilocus | 108 |
| abstract_inverted_index.platforms, | 258 |
| abstract_inverted_index.pneumoniae | 63, 209 |
| abstract_inverted_index.searchable | 183 |
| abstract_inverted_index.sequencing | 4, 17, 221 |
| abstract_inverted_index.serotypes, | 103 |
| abstract_inverted_index.ultimately | 287 |
| abstract_inverted_index.worldwide, | 286 |
| abstract_inverted_index.effectively | 33 |
| abstract_inverted_index.information | 13 |
| abstract_inverted_index.opportunity | 9 |
| abstract_inverted_index.pneumococci | 263 |
| abstract_inverted_index.processing, | 269 |
| abstract_inverted_index.researchers | 94, 285 |
| abstract_inverted_index.streamlined | 141 |
| abstract_inverted_index.technology, | 89, 227 |
| abstract_inverted_index.contributing | 288 |
| abstract_inverted_index.development, | 282 |
| abstract_inverted_index.downloadable | 185 |
| abstract_inverted_index.facilitating | 259 |
| abstract_inverted_index.particularly | 238 |
| abstract_inverted_index.pneumococcal | 104, 246 |
| abstract_inverted_index.pneumococci. | 150 |
| abstract_inverted_index.requirements | 122, 232 |
| abstract_inverted_index.streamlining | 267 |
| abstract_inverted_index.surveillance | 148, 206 |
| abstract_inverted_index.whole-genome | 16, 220 |
| abstract_inverted_index.Streptococcus | 62, 208 |
| abstract_inverted_index.antimicrobial | 112 |
| abstract_inverted_index.bioinformatic | 124 |
| abstract_inverted_index.ebi.ac.uk/ena | 192 |
| abstract_inverted_index.middle-income | 243 |
| abstract_inverted_index.surveillance, | 275 |
| abstract_inverted_index.surveillance. | 21 |
| abstract_inverted_index.unprecedented | 8 |
| abstract_inverted_index.user-friendly | 30, 216 |
| abstract_inverted_index.bioinformatics | 230 |
| abstract_inverted_index.infrastructure | 234 |
| abstract_inverted_index.responsiveness | 145 |
| abstract_inverted_index.reproducibility | 254 |
| abstract_inverted_index.antibiotics,with | 118 |
| abstract_inverted_index.containerisation | 88, 226 |
| abstract_inverted_index.susceptibilities | 113 |
| abstract_inverted_index.data.monocle.sanger.ac.uk | 176 |
| abstract_inverted_index.github.com/GlobalPneumoSeq/gps-pipeline | 161 |
| cited_by_percentile_year.max | 97 |
| cited_by_percentile_year.min | 95 |
| corresponding_author_ids | https://openalex.org/A5108706458 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 10 |
| corresponding_institution_ids | https://openalex.org/I2802476451 |
| citation_normalized_percentile.value | 0.80425335 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |