A Prediction Approach Based on Clustering Reconstruction for Abnormal Mining Pressure of Longwall Face under Residual Coal Pillars Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.3390/pr12020283
In multi-coal seam mining, when the lower coal seam mining face passes over the goaf, residual coal pillars, and other geological anomaly areas of the overlying coal seam, abnormal mine pressure appears, and the hydraulic support monitoring system is inaccurate in identifying the pressure, which brings great hidden dangers to the safe production of the mining face. It is very necessary to carry out the prediction and early warning of the mine pressure of this kind of mining face. In order to improve the reliability of the prediction model, this paper takes the 31317 mining faces of the Chahasu coal mine as the engineering background, studies the mechanism of the disaster caused by the abnormal mine pressure of the residual coal pillar, uses the clustering analysis algorithm to divide the abnormal mine pressure area of the mining face, reconstructs the abnormal mine pressure type and number based on the prediction results of CEEMDAN–Transformer deep learning, and proposes the disaster criterion of the abnormal mine pressure. The research results show that, when the 31317 mining face enters the goaf of the overlying 31203 and 31201 coal seams, the residual coal pillars are accompanied by the instability of the interlayer rotation, and the dynamic and static loads are superimposed to form the additional stress of the residual coal pillars and transfer downward, causing the abnormal mine pressure of the mining face to appear; based on the hydraulic support resistance data of the mining face within the range of 3921.4–5050.4 m advance, the clustering analysis results show that there are six abnormal mine pressures during this period, and the types are cutting eye, residual coal pillar, square breaking, previous working face goaf square breaking, double square breaking, and geological damage zone. The clustering analysis is used to reconstruct the abnormal mine pressure area based on the prediction results of the mine pressure time series (MPTS) after interpolation completion, decomposition, and noise reduction preprocessing, and the MAE values are all lower than 2000 kN, predicting that there will be one abnormal pressure between the 80#–129# hydraulic supports in the process of advancing to 5050.4–5219.5 m, corresponding to the 18th square breaking area of the working face. Through the verification in the actual production, the prediction result is accurate; when the predicted value of the hydraulic support working resistance is greater than 19,000 KN, measures should be taken to speed up the advancing speed of the mining face, quickly pass through the abnormal mine pressure area, and prevent the disaster caused by the abnormal mine pressure. The prediction clustering analysis reconstruction abnormal pressure analysis method based on mining working face mine pressure data proposed in this paper provides a new direction and guidance for the abnormal mine pressure prediction analysis of mining working face and has good foresight, good intelligent prediction, and a good analysis method for the intelligent empowerment of mine safety production.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.3390/pr12020283
- https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326
- OA Status
- gold
- Cited By
- 2
- References
- 20
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4391311160
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4391311160Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.3390/pr12020283Digital Object Identifier
- Title
-
A Prediction Approach Based on Clustering Reconstruction for Abnormal Mining Pressure of Longwall Face under Residual Coal PillarsWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-01-27Full publication date if available
- Authors
-
Haodong Hu, Yinghu Li, Qiangling Yao, Xuehua Li, Gang Huang, Kai Li, Qiang XuList of authors in order
- Landing page
-
https://doi.org/10.3390/pr12020283Publisher landing page
- PDF URL
-
https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326Direct OA link when available
- Concepts
-
Longwall mining, Coal mining, Residual, Mining engineering, Coal, Face (sociological concept), Problems in coal mining, Cluster analysis, Engineering, Computer science, Artificial intelligence, Social science, Sociology, Waste management, AlgorithmTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
2Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1Per-year citation counts (last 5 years)
- References (count)
-
20Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4391311160 |
|---|---|
| doi | https://doi.org/10.3390/pr12020283 |
| ids.doi | https://doi.org/10.3390/pr12020283 |
| ids.openalex | https://openalex.org/W4391311160 |
| fwci | 0.99966051 |
| type | article |
| title | A Prediction Approach Based on Clustering Reconstruction for Abnormal Mining Pressure of Longwall Face under Residual Coal Pillars |
| awards[0].id | https://openalex.org/G6986054934 |
| awards[0].funder_id | https://openalex.org/F4320334925 |
| awards[0].display_name | |
| awards[0].funder_award_id | BK20220024 |
| awards[0].funder_display_name | Science and Technology Support Program of Jiangsu Province |
| biblio.issue | 2 |
| biblio.volume | 12 |
| biblio.last_page | 283 |
| biblio.first_page | 283 |
| topics[0].id | https://openalex.org/T10161 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9973999857902527 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2211 |
| topics[0].subfield.display_name | Mechanics of Materials |
| topics[0].display_name | Rock Mechanics and Modeling |
| topics[1].id | https://openalex.org/T12282 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.9922000169754028 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2210 |
| topics[1].subfield.display_name | Mechanical Engineering |
| topics[1].display_name | Mineral Processing and Grinding |
| topics[2].id | https://openalex.org/T13619 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9908000230789185 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2211 |
| topics[2].subfield.display_name | Mechanics of Materials |
| topics[2].display_name | Geotechnical and Geomechanical Engineering |
| funders[0].id | https://openalex.org/F4320334925 |
| funders[0].ror | https://ror.org/02mkqta53 |
| funders[0].display_name | Science and Technology Support Program of Jiangsu Province |
| is_xpac | False |
| apc_list.value | 2000 |
| apc_list.currency | CHF |
| apc_list.value_usd | 2165 |
| apc_paid.value | 2000 |
| apc_paid.currency | CHF |
| apc_paid.value_usd | 2165 |
| concepts[0].id | https://openalex.org/C130446744 |
| concepts[0].level | 4 |
| concepts[0].score | 0.9060859680175781 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q381176 |
| concepts[0].display_name | Longwall mining |
| concepts[1].id | https://openalex.org/C108615695 |
| concepts[1].level | 3 |
| concepts[1].score | 0.8824764490127563 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q12880211 |
| concepts[1].display_name | Coal mining |
| concepts[2].id | https://openalex.org/C155512373 |
| concepts[2].level | 2 |
| concepts[2].score | 0.7263554930686951 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q287450 |
| concepts[2].display_name | Residual |
| concepts[3].id | https://openalex.org/C16674752 |
| concepts[3].level | 1 |
| concepts[3].score | 0.7112491726875305 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q1370637 |
| concepts[3].display_name | Mining engineering |
| concepts[4].id | https://openalex.org/C518851703 |
| concepts[4].level | 2 |
| concepts[4].score | 0.6016824841499329 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q24489 |
| concepts[4].display_name | Coal |
| concepts[5].id | https://openalex.org/C2779304628 |
| concepts[5].level | 2 |
| concepts[5].score | 0.4889043867588043 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3503480 |
| concepts[5].display_name | Face (sociological concept) |
| concepts[6].id | https://openalex.org/C28860762 |
| concepts[6].level | 4 |
| concepts[6].score | 0.46069642901420593 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q7246974 |
| concepts[6].display_name | Problems in coal mining |
| concepts[7].id | https://openalex.org/C73555534 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4315832555294037 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q622825 |
| concepts[7].display_name | Cluster analysis |
| concepts[8].id | https://openalex.org/C127413603 |
| concepts[8].level | 0 |
| concepts[8].score | 0.29699045419692993 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[8].display_name | Engineering |
| concepts[9].id | https://openalex.org/C41008148 |
| concepts[9].level | 0 |
| concepts[9].score | 0.1902184784412384 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[9].display_name | Computer science |
| concepts[10].id | https://openalex.org/C154945302 |
| concepts[10].level | 1 |
| concepts[10].score | 0.17066287994384766 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[10].display_name | Artificial intelligence |
| concepts[11].id | https://openalex.org/C36289849 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q34749 |
| concepts[11].display_name | Social science |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| concepts[13].id | https://openalex.org/C548081761 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q180388 |
| concepts[13].display_name | Waste management |
| concepts[14].id | https://openalex.org/C11413529 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[14].display_name | Algorithm |
| keywords[0].id | https://openalex.org/keywords/longwall-mining |
| keywords[0].score | 0.9060859680175781 |
| keywords[0].display_name | Longwall mining |
| keywords[1].id | https://openalex.org/keywords/coal-mining |
| keywords[1].score | 0.8824764490127563 |
| keywords[1].display_name | Coal mining |
| keywords[2].id | https://openalex.org/keywords/residual |
| keywords[2].score | 0.7263554930686951 |
| keywords[2].display_name | Residual |
| keywords[3].id | https://openalex.org/keywords/mining-engineering |
| keywords[3].score | 0.7112491726875305 |
| keywords[3].display_name | Mining engineering |
| keywords[4].id | https://openalex.org/keywords/coal |
| keywords[4].score | 0.6016824841499329 |
| keywords[4].display_name | Coal |
| keywords[5].id | https://openalex.org/keywords/face |
| keywords[5].score | 0.4889043867588043 |
| keywords[5].display_name | Face (sociological concept) |
| keywords[6].id | https://openalex.org/keywords/problems-in-coal-mining |
| keywords[6].score | 0.46069642901420593 |
| keywords[6].display_name | Problems in coal mining |
| keywords[7].id | https://openalex.org/keywords/cluster-analysis |
| keywords[7].score | 0.4315832555294037 |
| keywords[7].display_name | Cluster analysis |
| keywords[8].id | https://openalex.org/keywords/engineering |
| keywords[8].score | 0.29699045419692993 |
| keywords[8].display_name | Engineering |
| keywords[9].id | https://openalex.org/keywords/computer-science |
| keywords[9].score | 0.1902184784412384 |
| keywords[9].display_name | Computer science |
| keywords[10].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[10].score | 0.17066287994384766 |
| keywords[10].display_name | Artificial intelligence |
| language | en |
| locations[0].id | doi:10.3390/pr12020283 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4210201879 |
| locations[0].source.issn | 2227-9717 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2227-9717 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Processes |
| locations[0].source.host_organization | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310310987 |
| locations[0].source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Processes |
| locations[0].landing_page_url | https://doi.org/10.3390/pr12020283 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5087369638 |
| authorships[0].author.orcid | https://orcid.org/0009-0002-8915-7225 |
| authorships[0].author.display_name | Haodong Hu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[0].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[0].institutions[0].id | https://openalex.org/I25757504 |
| authorships[0].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | China University of Mining and Technology |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Haodong Hu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].author.id | https://openalex.org/A5005242293 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Yinghu Li |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[1].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[1].institutions[0].id | https://openalex.org/I25757504 |
| authorships[1].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | China University of Mining and Technology |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yinghu Li |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].author.id | https://openalex.org/A5061972650 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-9900-4615 |
| authorships[2].author.display_name | Qiangling Yao |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[2].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[2].institutions[0].id | https://openalex.org/I25757504 |
| authorships[2].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | China University of Mining and Technology |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Qiangling Yao |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[3].author.id | https://openalex.org/A5006302805 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-9420-8635 |
| authorships[3].author.display_name | Xuehua Li |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[3].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[3].institutions[0].id | https://openalex.org/I25757504 |
| authorships[3].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | China University of Mining and Technology |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Xuehua Li |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[4].author.id | https://openalex.org/A5112696861 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4973-3363 |
| authorships[4].author.display_name | Gang Huang |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[4].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[4].institutions[0].id | https://openalex.org/I25757504 |
| authorships[4].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | China University of Mining and Technology |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Gang Huang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[5].author.id | https://openalex.org/A5100642721 |
| authorships[5].author.orcid | https://orcid.org/0000-0002-8464-2443 |
| authorships[5].author.display_name | Kai Li |
| authorships[5].countries | CN |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[5].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[5].institutions[0].id | https://openalex.org/I25757504 |
| authorships[5].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | China University of Mining and Technology |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Kai Li |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[6].author.id | https://openalex.org/A5088556682 |
| authorships[6].author.orcid | https://orcid.org/0000-0001-6747-126X |
| authorships[6].author.display_name | Qiang Xu |
| authorships[6].countries | CN |
| authorships[6].affiliations[0].institution_ids | https://openalex.org/I25757504 |
| authorships[6].affiliations[0].raw_affiliation_string | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| authorships[6].institutions[0].id | https://openalex.org/I25757504 |
| authorships[6].institutions[0].ror | https://ror.org/01xt2dr21 |
| authorships[6].institutions[0].type | education |
| authorships[6].institutions[0].lineage | https://openalex.org/I25757504 |
| authorships[6].institutions[0].country_code | CN |
| authorships[6].institutions[0].display_name | China University of Mining and Technology |
| authorships[6].author_position | last |
| authorships[6].raw_author_name | Qiang Xu |
| authorships[6].is_corresponding | False |
| authorships[6].raw_affiliation_strings | Key Laboratory of Deep Coal Resource Mining, Ministry of Education, School of Mines, China University of Mining and Technology, Xuzhou 221116, China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Prediction Approach Based on Clustering Reconstruction for Abnormal Mining Pressure of Longwall Face under Residual Coal Pillars |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10161 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9973999857902527 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2211 |
| primary_topic.subfield.display_name | Mechanics of Materials |
| primary_topic.display_name | Rock Mechanics and Modeling |
| related_works | https://openalex.org/W2375677716, https://openalex.org/W3134922848, https://openalex.org/W2393565910, https://openalex.org/W3092759287, https://openalex.org/W2970554748, https://openalex.org/W2064080363, https://openalex.org/W1995037802, https://openalex.org/W3004189978, https://openalex.org/W2374560800, https://openalex.org/W3172063611 |
| cited_by_count | 2 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| locations_count | 1 |
| best_oa_location.id | doi:10.3390/pr12020283 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4210201879 |
| best_oa_location.source.issn | 2227-9717 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2227-9717 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | Processes |
| best_oa_location.source.host_organization | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| best_oa_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Processes |
| best_oa_location.landing_page_url | https://doi.org/10.3390/pr12020283 |
| primary_location.id | doi:10.3390/pr12020283 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4210201879 |
| primary_location.source.issn | 2227-9717 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2227-9717 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Processes |
| primary_location.source.host_organization | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_name | Multidisciplinary Digital Publishing Institute |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310310987 |
| primary_location.source.host_organization_lineage_names | Multidisciplinary Digital Publishing Institute |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.mdpi.com/2227-9717/12/2/283/pdf?version=1706351326 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Processes |
| primary_location.landing_page_url | https://doi.org/10.3390/pr12020283 |
| publication_date | 2024-01-27 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4386284476, https://openalex.org/W4319661908, https://openalex.org/W2937022807, https://openalex.org/W2886284488, https://openalex.org/W3198988263, https://openalex.org/W4389194066, https://openalex.org/W4386417563, https://openalex.org/W4372291892, https://openalex.org/W3083963384, https://openalex.org/W3003380671, https://openalex.org/W4387723209, https://openalex.org/W4320494684, https://openalex.org/W4213418104, https://openalex.org/W3198191003, https://openalex.org/W4313413042, https://openalex.org/W3123117797, https://openalex.org/W3100095447, https://openalex.org/W2018612798, https://openalex.org/W6739901393, https://openalex.org/W4385245566 |
| referenced_works_count | 20 |
| abstract_inverted_index.a | 443, 467 |
| abstract_inverted_index.m | 247 |
| abstract_inverted_index.In | 0, 79 |
| abstract_inverted_index.It | 57 |
| abstract_inverted_index.as | 101 |
| abstract_inverted_index.be | 334, 391 |
| abstract_inverted_index.by | 112, 192, 416 |
| abstract_inverted_index.in | 40, 343, 365, 439 |
| abstract_inverted_index.is | 38, 58, 291, 372, 384 |
| abstract_inverted_index.m, | 350 |
| abstract_inverted_index.of | 23, 53, 69, 73, 76, 85, 96, 108, 117, 134, 151, 160, 178, 195, 212, 225, 238, 245, 305, 346, 358, 378, 399, 455, 475 |
| abstract_inverted_index.on | 147, 232, 301, 431 |
| abstract_inverted_index.to | 49, 61, 81, 127, 207, 229, 293, 348, 352, 393 |
| abstract_inverted_index.up | 395 |
| abstract_inverted_index.KN, | 388 |
| abstract_inverted_index.MAE | 322 |
| abstract_inverted_index.The | 165, 288, 421 |
| abstract_inverted_index.all | 325 |
| abstract_inverted_index.and | 18, 32, 66, 144, 155, 182, 199, 202, 217, 264, 284, 316, 320, 411, 446, 459, 466 |
| abstract_inverted_index.are | 190, 205, 256, 267, 324 |
| abstract_inverted_index.for | 448, 471 |
| abstract_inverted_index.has | 460 |
| abstract_inverted_index.kN, | 329 |
| abstract_inverted_index.new | 444 |
| abstract_inverted_index.one | 335 |
| abstract_inverted_index.out | 63 |
| abstract_inverted_index.six | 257 |
| abstract_inverted_index.the | 5, 13, 24, 33, 42, 50, 54, 64, 70, 83, 86, 92, 97, 102, 106, 109, 113, 118, 123, 129, 135, 139, 148, 157, 161, 171, 176, 179, 186, 193, 196, 200, 209, 213, 221, 226, 233, 239, 243, 249, 265, 295, 302, 306, 321, 339, 344, 353, 359, 363, 366, 369, 375, 379, 396, 400, 406, 413, 417, 449, 472 |
| abstract_inverted_index.18th | 354 |
| abstract_inverted_index.2000 | 328 |
| abstract_inverted_index.area | 133, 299, 357 |
| abstract_inverted_index.coal | 7, 16, 26, 99, 120, 184, 188, 215, 271 |
| abstract_inverted_index.data | 237, 437 |
| abstract_inverted_index.deep | 153 |
| abstract_inverted_index.eye, | 269 |
| abstract_inverted_index.face | 10, 174, 228, 241, 277, 434, 458 |
| abstract_inverted_index.form | 208 |
| abstract_inverted_index.goaf | 177, 278 |
| abstract_inverted_index.good | 461, 463, 468 |
| abstract_inverted_index.kind | 75 |
| abstract_inverted_index.mine | 29, 71, 100, 115, 131, 141, 163, 223, 259, 297, 307, 408, 419, 435, 451, 476 |
| abstract_inverted_index.over | 12 |
| abstract_inverted_index.pass | 404 |
| abstract_inverted_index.safe | 51 |
| abstract_inverted_index.seam | 2, 8 |
| abstract_inverted_index.show | 168, 253 |
| abstract_inverted_index.than | 327, 386 |
| abstract_inverted_index.that | 254, 331 |
| abstract_inverted_index.this | 74, 89, 262, 440 |
| abstract_inverted_index.time | 309 |
| abstract_inverted_index.type | 143 |
| abstract_inverted_index.used | 292 |
| abstract_inverted_index.uses | 122 |
| abstract_inverted_index.very | 59 |
| abstract_inverted_index.when | 4, 170, 374 |
| abstract_inverted_index.will | 333 |
| abstract_inverted_index.31201 | 183 |
| abstract_inverted_index.31203 | 181 |
| abstract_inverted_index.31317 | 93, 172 |
| abstract_inverted_index.after | 312 |
| abstract_inverted_index.area, | 410 |
| abstract_inverted_index.areas | 22 |
| abstract_inverted_index.based | 146, 231, 300, 430 |
| abstract_inverted_index.carry | 62 |
| abstract_inverted_index.early | 67 |
| abstract_inverted_index.face, | 137, 402 |
| abstract_inverted_index.face. | 56, 78, 361 |
| abstract_inverted_index.faces | 95 |
| abstract_inverted_index.goaf, | 14 |
| abstract_inverted_index.great | 46 |
| abstract_inverted_index.loads | 204 |
| abstract_inverted_index.lower | 6, 326 |
| abstract_inverted_index.noise | 317 |
| abstract_inverted_index.order | 80 |
| abstract_inverted_index.other | 19 |
| abstract_inverted_index.paper | 90, 441 |
| abstract_inverted_index.range | 244 |
| abstract_inverted_index.seam, | 27 |
| abstract_inverted_index.speed | 394, 398 |
| abstract_inverted_index.taken | 392 |
| abstract_inverted_index.takes | 91 |
| abstract_inverted_index.that, | 169 |
| abstract_inverted_index.there | 255, 332 |
| abstract_inverted_index.types | 266 |
| abstract_inverted_index.value | 377 |
| abstract_inverted_index.which | 44 |
| abstract_inverted_index.zone. | 287 |
| abstract_inverted_index.(MPTS) | 311 |
| abstract_inverted_index.19,000 | 387 |
| abstract_inverted_index.actual | 367 |
| abstract_inverted_index.brings | 45 |
| abstract_inverted_index.caused | 111, 415 |
| abstract_inverted_index.damage | 286 |
| abstract_inverted_index.divide | 128 |
| abstract_inverted_index.double | 281 |
| abstract_inverted_index.during | 261 |
| abstract_inverted_index.enters | 175 |
| abstract_inverted_index.hidden | 47 |
| abstract_inverted_index.method | 429, 470 |
| abstract_inverted_index.mining | 9, 55, 77, 94, 136, 173, 227, 240, 401, 432, 456 |
| abstract_inverted_index.model, | 88 |
| abstract_inverted_index.number | 145 |
| abstract_inverted_index.passes | 11 |
| abstract_inverted_index.result | 371 |
| abstract_inverted_index.safety | 477 |
| abstract_inverted_index.seams, | 185 |
| abstract_inverted_index.series | 310 |
| abstract_inverted_index.should | 390 |
| abstract_inverted_index.square | 273, 279, 282, 355 |
| abstract_inverted_index.static | 203 |
| abstract_inverted_index.stress | 211 |
| abstract_inverted_index.system | 37 |
| abstract_inverted_index.values | 323 |
| abstract_inverted_index.within | 242 |
| abstract_inverted_index.Chahasu | 98 |
| abstract_inverted_index.Through | 362 |
| abstract_inverted_index.anomaly | 21 |
| abstract_inverted_index.appear; | 230 |
| abstract_inverted_index.between | 338 |
| abstract_inverted_index.causing | 220 |
| abstract_inverted_index.cutting | 268 |
| abstract_inverted_index.dangers | 48 |
| abstract_inverted_index.dynamic | 201 |
| abstract_inverted_index.greater | 385 |
| abstract_inverted_index.improve | 82 |
| abstract_inverted_index.mining, | 3 |
| abstract_inverted_index.period, | 263 |
| abstract_inverted_index.pillar, | 121, 272 |
| abstract_inverted_index.pillars | 189, 216 |
| abstract_inverted_index.prevent | 412 |
| abstract_inverted_index.process | 345 |
| abstract_inverted_index.quickly | 403 |
| abstract_inverted_index.results | 150, 167, 252, 304 |
| abstract_inverted_index.studies | 105 |
| abstract_inverted_index.support | 35, 235, 381 |
| abstract_inverted_index.through | 405 |
| abstract_inverted_index.warning | 68 |
| abstract_inverted_index.working | 276, 360, 382, 433, 457 |
| abstract_inverted_index.abnormal | 28, 114, 130, 140, 162, 222, 258, 296, 336, 407, 418, 426, 450 |
| abstract_inverted_index.advance, | 248 |
| abstract_inverted_index.analysis | 125, 251, 290, 424, 428, 454, 469 |
| abstract_inverted_index.appears, | 31 |
| abstract_inverted_index.breaking | 356 |
| abstract_inverted_index.disaster | 110, 158, 414 |
| abstract_inverted_index.guidance | 447 |
| abstract_inverted_index.measures | 389 |
| abstract_inverted_index.pillars, | 17 |
| abstract_inverted_index.pressure | 30, 72, 116, 132, 142, 224, 298, 308, 337, 409, 427, 436, 452 |
| abstract_inverted_index.previous | 275 |
| abstract_inverted_index.proposed | 438 |
| abstract_inverted_index.proposes | 156 |
| abstract_inverted_index.provides | 442 |
| abstract_inverted_index.research | 166 |
| abstract_inverted_index.residual | 15, 119, 187, 214, 270 |
| abstract_inverted_index.supports | 342 |
| abstract_inverted_index.transfer | 218 |
| abstract_inverted_index.accurate; | 373 |
| abstract_inverted_index.advancing | 347, 397 |
| abstract_inverted_index.algorithm | 126 |
| abstract_inverted_index.breaking, | 274, 280, 283 |
| abstract_inverted_index.criterion | 159 |
| abstract_inverted_index.direction | 445 |
| abstract_inverted_index.downward, | 219 |
| abstract_inverted_index.hydraulic | 34, 234, 341, 380 |
| abstract_inverted_index.learning, | 154 |
| abstract_inverted_index.mechanism | 107 |
| abstract_inverted_index.necessary | 60 |
| abstract_inverted_index.overlying | 25, 180 |
| abstract_inverted_index.predicted | 376 |
| abstract_inverted_index.pressure, | 43 |
| abstract_inverted_index.pressure. | 164, 420 |
| abstract_inverted_index.pressures | 260 |
| abstract_inverted_index.reduction | 318 |
| abstract_inverted_index.rotation, | 198 |
| abstract_inverted_index.80#–129# | 340 |
| abstract_inverted_index.additional | 210 |
| abstract_inverted_index.clustering | 124, 250, 289, 423 |
| abstract_inverted_index.foresight, | 462 |
| abstract_inverted_index.geological | 20, 285 |
| abstract_inverted_index.inaccurate | 39 |
| abstract_inverted_index.interlayer | 197 |
| abstract_inverted_index.monitoring | 36 |
| abstract_inverted_index.multi-coal | 1 |
| abstract_inverted_index.predicting | 330 |
| abstract_inverted_index.prediction | 65, 87, 149, 303, 370, 422, 453 |
| abstract_inverted_index.production | 52 |
| abstract_inverted_index.resistance | 236, 383 |
| abstract_inverted_index.accompanied | 191 |
| abstract_inverted_index.background, | 104 |
| abstract_inverted_index.completion, | 314 |
| abstract_inverted_index.empowerment | 474 |
| abstract_inverted_index.engineering | 103 |
| abstract_inverted_index.identifying | 41 |
| abstract_inverted_index.instability | 194 |
| abstract_inverted_index.intelligent | 464, 473 |
| abstract_inverted_index.prediction, | 465 |
| abstract_inverted_index.production, | 368 |
| abstract_inverted_index.production. | 478 |
| abstract_inverted_index.reconstruct | 294 |
| abstract_inverted_index.reliability | 84 |
| abstract_inverted_index.reconstructs | 138 |
| abstract_inverted_index.superimposed | 206 |
| abstract_inverted_index.verification | 364 |
| abstract_inverted_index.corresponding | 351 |
| abstract_inverted_index.interpolation | 313 |
| abstract_inverted_index.decomposition, | 315 |
| abstract_inverted_index.preprocessing, | 319 |
| abstract_inverted_index.reconstruction | 425 |
| abstract_inverted_index.3921.4–5050.4 | 246 |
| abstract_inverted_index.5050.4–5219.5 | 349 |
| abstract_inverted_index.CEEMDAN–Transformer | 152 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 90 |
| corresponding_author_ids | https://openalex.org/A5061972650 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 7 |
| corresponding_institution_ids | https://openalex.org/I25757504 |
| citation_normalized_percentile.value | 0.62793469 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |