A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network Model Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.1115/1.4051905
Rupture risk assessment of abdominal aortic aneurysms (AAAs) by means of quantifying wall stress is a common biomechanical strategy. However, the clinical translation of this approach has been greatly limited due to the complexity associated with the computational tools required for its implementation. Thus, being able to estimate wall stress using nonbiomechanical markers that can be quantified as a direct outcome of clinical image segmentation would be advantageous in improving the potential implementation of said strategy. In the present work, we investigated the use of geometric indices to predict patient-specific AAA wall stress by means of a novel neural network (NN) modeling approach. We conducted a retrospective review of existing clinical images of two patient groups: 98 asymptomatic and 50 symptomatic AAAs. The images were subject to a protocol consisting of image segmentation, processing, volume meshing, finite element modeling, and geometry quantification, from which 53 geometric indices and the spatially averaged wall stress (SAWS) were calculated. SAWS estimated from finite element analysis was considered the gold standard for the predictions. We developed feed-forward NN models composed of an input layer, two dense layers, and an output layer using Keras, a deep learning library in python. The NN models were trained, tested, and validated independently for both AAA groups using all geometric indices, as well as a reduced set of indices resulting from a variable reduction procedure. We compared the performance of the NN models with two standard machine learning algorithms (MARS: multivariate adaptive regression splines and GAM: generalized additive model) and a linear regression model (GLM: generalized linear model). With the reduced sets of indices, the NN-based approach exhibited the highest mean goodness-of-fit (for the symptomatic group 0.71 and for the asymptomatic group 0.79) and lowest mean relative error (17% for both groups). In contrast, MARS yielded a mean goodness-of-fit of 0.59 for the symptomatic group and 0.77 for the asymptomatic group, with relative errors of 17% for the symptomatic group and 22% for the asymptomatic group. GAM had a mean goodness-of-fit of 0.70 for the symptomatic group and 0.80 for the asymptomatic group, with relative errors of 16% for the symptomatic group and 20% for the asymptomatic group. GLM did not perform as well as the other algorithms, with a mean goodness-of-fit of 0.53 for the symptomatic group and 0.70 for the asymptomatic group, with relative errors of 19% for the symptomatic group and 23% for the asymptomatic group. Nevertheless, the NN models required a reduced set of 15 and 13 geometric indices to predict SAWS for the symptomatic and asymptomatic AAA groups, respectively. This was in contrast to the reduced set of nine and eight geometric indices required to predict SAWS with the MARS and GAM algorithms for each AAA group, respectively. The use of NN modeling represents a promising alternative methodology for the estimation of AAA wall stress using geometric indices as surrogates, in lieu of finite element modeling. The performance metrics of NN models are expected to improve with significantly larger group sizes, given the suitability of NN modeling for “big data” applications.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1115/1.4051905
- OA Status
- green
- Cited By
- 17
- References
- 51
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W3185827779
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W3185827779Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1115/1.4051905Digital Object Identifier
- Title
-
A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network ModelWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-07-28Full publication date if available
- Authors
-
Balaji Rengarajan, Sourav S. Patnaik, Ender A. FinolList of authors in order
- Landing page
-
https://doi.org/10.1115/1.4051905Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.ncbi.nlm.nih.gov/pmc/articles/8420793Direct OA link when available
- Concepts
-
Multivariate adaptive regression splines, Artificial neural network, Artificial intelligence, Robustness (evolution), Segmentation, Linear discriminant analysis, Computer science, Finite element method, Abdominal aortic aneurysm, Regression analysis, Pattern recognition (psychology), Algorithm, Machine learning, Bayesian multivariate linear regression, Medicine, Radiology, Structural engineering, Engineering, Aneurysm, Gene, Chemistry, BiochemistryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
17Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 3, 2024: 7, 2023: 4, 2022: 3Per-year citation counts (last 5 years)
- References (count)
-
51Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W3185827779 |
|---|---|
| doi | https://doi.org/10.1115/1.4051905 |
| ids.doi | https://doi.org/10.1115/1.4051905 |
| ids.mag | 3185827779 |
| ids.pmid | https://pubmed.ncbi.nlm.nih.gov/34318314 |
| ids.openalex | https://openalex.org/W3185827779 |
| fwci | 2.47622538 |
| mesh[0].qualifier_ui | Q000000981 |
| mesh[0].descriptor_ui | D017544 |
| mesh[0].is_major_topic | True |
| mesh[0].qualifier_name | diagnostic imaging |
| mesh[0].descriptor_name | Aortic Aneurysm, Abdominal |
| mesh[1].qualifier_ui | Q000150 |
| mesh[1].descriptor_ui | D001019 |
| mesh[1].is_major_topic | True |
| mesh[1].qualifier_name | complications |
| mesh[1].descriptor_name | Aortic Rupture |
| mesh[2].qualifier_ui | |
| mesh[2].descriptor_ui | D020342 |
| mesh[2].is_major_topic | False |
| mesh[2].qualifier_name | |
| mesh[2].descriptor_name | Finite Element Analysis |
| mesh[3].qualifier_ui | |
| mesh[3].descriptor_ui | D006801 |
| mesh[3].is_major_topic | False |
| mesh[3].qualifier_name | |
| mesh[3].descriptor_name | Humans |
| mesh[4].qualifier_ui | |
| mesh[4].descriptor_ui | D008955 |
| mesh[4].is_major_topic | False |
| mesh[4].qualifier_name | |
| mesh[4].descriptor_name | Models, Cardiovascular |
| mesh[5].qualifier_ui | |
| mesh[5].descriptor_ui | D016571 |
| mesh[5].is_major_topic | False |
| mesh[5].qualifier_name | |
| mesh[5].descriptor_name | Neural Networks, Computer |
| mesh[6].qualifier_ui | |
| mesh[6].descriptor_ui | D012189 |
| mesh[6].is_major_topic | False |
| mesh[6].qualifier_name | |
| mesh[6].descriptor_name | Retrospective Studies |
| mesh[7].qualifier_ui | Q000379 |
| mesh[7].descriptor_ui | D018570 |
| mesh[7].is_major_topic | False |
| mesh[7].qualifier_name | methods |
| mesh[7].descriptor_name | Risk Assessment |
| mesh[8].qualifier_ui | |
| mesh[8].descriptor_ui | D013314 |
| mesh[8].is_major_topic | False |
| mesh[8].qualifier_name | |
| mesh[8].descriptor_name | Stress, Mechanical |
| mesh[9].qualifier_ui | Q000000981 |
| mesh[9].descriptor_ui | D017544 |
| mesh[9].is_major_topic | True |
| mesh[9].qualifier_name | diagnostic imaging |
| mesh[9].descriptor_name | Aortic Aneurysm, Abdominal |
| mesh[10].qualifier_ui | Q000150 |
| mesh[10].descriptor_ui | D001019 |
| mesh[10].is_major_topic | True |
| mesh[10].qualifier_name | complications |
| mesh[10].descriptor_name | Aortic Rupture |
| mesh[11].qualifier_ui | |
| mesh[11].descriptor_ui | D020342 |
| mesh[11].is_major_topic | False |
| mesh[11].qualifier_name | |
| mesh[11].descriptor_name | Finite Element Analysis |
| mesh[12].qualifier_ui | |
| mesh[12].descriptor_ui | D006801 |
| mesh[12].is_major_topic | False |
| mesh[12].qualifier_name | |
| mesh[12].descriptor_name | Humans |
| mesh[13].qualifier_ui | |
| mesh[13].descriptor_ui | D008955 |
| mesh[13].is_major_topic | False |
| mesh[13].qualifier_name | |
| mesh[13].descriptor_name | Models, Cardiovascular |
| mesh[14].qualifier_ui | |
| mesh[14].descriptor_ui | D016571 |
| mesh[14].is_major_topic | False |
| mesh[14].qualifier_name | |
| mesh[14].descriptor_name | Neural Networks, Computer |
| mesh[15].qualifier_ui | |
| mesh[15].descriptor_ui | D012189 |
| mesh[15].is_major_topic | False |
| mesh[15].qualifier_name | |
| mesh[15].descriptor_name | Retrospective Studies |
| mesh[16].qualifier_ui | Q000379 |
| mesh[16].descriptor_ui | D018570 |
| mesh[16].is_major_topic | False |
| mesh[16].qualifier_name | methods |
| mesh[16].descriptor_name | Risk Assessment |
| mesh[17].qualifier_ui | |
| mesh[17].descriptor_ui | D013314 |
| mesh[17].is_major_topic | False |
| mesh[17].qualifier_name | |
| mesh[17].descriptor_name | Stress, Mechanical |
| type | article |
| title | A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network Model |
| awards[0].id | https://openalex.org/G2768844582 |
| awards[0].funder_id | https://openalex.org/F4320337338 |
| awards[0].funder_award_id | R01HL121293 |
| awards[0].funder_display_name | National Heart, Lung, and Blood Institute |
| biblio.issue | 12 |
| biblio.volume | 143 |
| biblio.last_page | |
| biblio.first_page | |
| grants[0].funder | https://openalex.org/F4320337338 |
| grants[0].award_id | R01HL121293 |
| grants[0].funder_display_name | National Heart, Lung, and Blood Institute |
| topics[0].id | https://openalex.org/T10983 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2740 |
| topics[0].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[0].display_name | Aortic aneurysm repair treatments |
| topics[1].id | https://openalex.org/T11930 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9983999729156494 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2705 |
| topics[1].subfield.display_name | Cardiology and Cardiovascular Medicine |
| topics[1].display_name | Cardiac, Anesthesia and Surgical Outcomes |
| topics[2].id | https://openalex.org/T10618 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.978600025177002 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2740 |
| topics[2].subfield.display_name | Pulmonary and Respiratory Medicine |
| topics[2].display_name | Aortic Disease and Treatment Approaches |
| funders[0].id | https://openalex.org/F4320337338 |
| funders[0].ror | https://ror.org/012pb6c26 |
| funders[0].display_name | National Heart, Lung, and Blood Institute |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C44882253 |
| concepts[0].level | 4 |
| concepts[0].score | 0.6745717525482178 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q3455882 |
| concepts[0].display_name | Multivariate adaptive regression splines |
| concepts[1].id | https://openalex.org/C50644808 |
| concepts[1].level | 2 |
| concepts[1].score | 0.5987083911895752 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q192776 |
| concepts[1].display_name | Artificial neural network |
| concepts[2].id | https://openalex.org/C154945302 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5679923295974731 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[2].display_name | Artificial intelligence |
| concepts[3].id | https://openalex.org/C63479239 |
| concepts[3].level | 3 |
| concepts[3].score | 0.558894157409668 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q7353546 |
| concepts[3].display_name | Robustness (evolution) |
| concepts[4].id | https://openalex.org/C89600930 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5330179333686829 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1423946 |
| concepts[4].display_name | Segmentation |
| concepts[5].id | https://openalex.org/C69738355 |
| concepts[5].level | 2 |
| concepts[5].score | 0.5059067606925964 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q1228929 |
| concepts[5].display_name | Linear discriminant analysis |
| concepts[6].id | https://openalex.org/C41008148 |
| concepts[6].level | 0 |
| concepts[6].score | 0.4737492501735687 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[6].display_name | Computer science |
| concepts[7].id | https://openalex.org/C135628077 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4295116364955902 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q220184 |
| concepts[7].display_name | Finite element method |
| concepts[8].id | https://openalex.org/C2779993416 |
| concepts[8].level | 3 |
| concepts[8].score | 0.4252206087112427 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2256736 |
| concepts[8].display_name | Abdominal aortic aneurysm |
| concepts[9].id | https://openalex.org/C152877465 |
| concepts[9].level | 2 |
| concepts[9].score | 0.4202457070350647 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q208042 |
| concepts[9].display_name | Regression analysis |
| concepts[10].id | https://openalex.org/C153180895 |
| concepts[10].level | 2 |
| concepts[10].score | 0.36226433515548706 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[10].display_name | Pattern recognition (psychology) |
| concepts[11].id | https://openalex.org/C11413529 |
| concepts[11].level | 1 |
| concepts[11].score | 0.3455740213394165 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[11].display_name | Algorithm |
| concepts[12].id | https://openalex.org/C119857082 |
| concepts[12].level | 1 |
| concepts[12].score | 0.32481616735458374 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[12].display_name | Machine learning |
| concepts[13].id | https://openalex.org/C64946054 |
| concepts[13].level | 3 |
| concepts[13].score | 0.31503257155418396 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q4874476 |
| concepts[13].display_name | Bayesian multivariate linear regression |
| concepts[14].id | https://openalex.org/C71924100 |
| concepts[14].level | 0 |
| concepts[14].score | 0.23416593670845032 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[14].display_name | Medicine |
| concepts[15].id | https://openalex.org/C126838900 |
| concepts[15].level | 1 |
| concepts[15].score | 0.17367523908615112 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[15].display_name | Radiology |
| concepts[16].id | https://openalex.org/C66938386 |
| concepts[16].level | 1 |
| concepts[16].score | 0.15477794408798218 |
| concepts[16].wikidata | https://www.wikidata.org/wiki/Q633538 |
| concepts[16].display_name | Structural engineering |
| concepts[17].id | https://openalex.org/C127413603 |
| concepts[17].level | 0 |
| concepts[17].score | 0.14626994729042053 |
| concepts[17].wikidata | https://www.wikidata.org/wiki/Q11023 |
| concepts[17].display_name | Engineering |
| concepts[18].id | https://openalex.org/C2776098176 |
| concepts[18].level | 2 |
| concepts[18].score | 0.13635259866714478 |
| concepts[18].wikidata | https://www.wikidata.org/wiki/Q189389 |
| concepts[18].display_name | Aneurysm |
| concepts[19].id | https://openalex.org/C104317684 |
| concepts[19].level | 2 |
| concepts[19].score | 0.0 |
| concepts[19].wikidata | https://www.wikidata.org/wiki/Q7187 |
| concepts[19].display_name | Gene |
| concepts[20].id | https://openalex.org/C185592680 |
| concepts[20].level | 0 |
| concepts[20].score | 0.0 |
| concepts[20].wikidata | https://www.wikidata.org/wiki/Q2329 |
| concepts[20].display_name | Chemistry |
| concepts[21].id | https://openalex.org/C55493867 |
| concepts[21].level | 1 |
| concepts[21].score | 0.0 |
| concepts[21].wikidata | https://www.wikidata.org/wiki/Q7094 |
| concepts[21].display_name | Biochemistry |
| keywords[0].id | https://openalex.org/keywords/multivariate-adaptive-regression-splines |
| keywords[0].score | 0.6745717525482178 |
| keywords[0].display_name | Multivariate adaptive regression splines |
| keywords[1].id | https://openalex.org/keywords/artificial-neural-network |
| keywords[1].score | 0.5987083911895752 |
| keywords[1].display_name | Artificial neural network |
| keywords[2].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[2].score | 0.5679923295974731 |
| keywords[2].display_name | Artificial intelligence |
| keywords[3].id | https://openalex.org/keywords/robustness |
| keywords[3].score | 0.558894157409668 |
| keywords[3].display_name | Robustness (evolution) |
| keywords[4].id | https://openalex.org/keywords/segmentation |
| keywords[4].score | 0.5330179333686829 |
| keywords[4].display_name | Segmentation |
| keywords[5].id | https://openalex.org/keywords/linear-discriminant-analysis |
| keywords[5].score | 0.5059067606925964 |
| keywords[5].display_name | Linear discriminant analysis |
| keywords[6].id | https://openalex.org/keywords/computer-science |
| keywords[6].score | 0.4737492501735687 |
| keywords[6].display_name | Computer science |
| keywords[7].id | https://openalex.org/keywords/finite-element-method |
| keywords[7].score | 0.4295116364955902 |
| keywords[7].display_name | Finite element method |
| keywords[8].id | https://openalex.org/keywords/abdominal-aortic-aneurysm |
| keywords[8].score | 0.4252206087112427 |
| keywords[8].display_name | Abdominal aortic aneurysm |
| keywords[9].id | https://openalex.org/keywords/regression-analysis |
| keywords[9].score | 0.4202457070350647 |
| keywords[9].display_name | Regression analysis |
| keywords[10].id | https://openalex.org/keywords/pattern-recognition |
| keywords[10].score | 0.36226433515548706 |
| keywords[10].display_name | Pattern recognition (psychology) |
| keywords[11].id | https://openalex.org/keywords/algorithm |
| keywords[11].score | 0.3455740213394165 |
| keywords[11].display_name | Algorithm |
| keywords[12].id | https://openalex.org/keywords/machine-learning |
| keywords[12].score | 0.32481616735458374 |
| keywords[12].display_name | Machine learning |
| keywords[13].id | https://openalex.org/keywords/bayesian-multivariate-linear-regression |
| keywords[13].score | 0.31503257155418396 |
| keywords[13].display_name | Bayesian multivariate linear regression |
| keywords[14].id | https://openalex.org/keywords/medicine |
| keywords[14].score | 0.23416593670845032 |
| keywords[14].display_name | Medicine |
| keywords[15].id | https://openalex.org/keywords/radiology |
| keywords[15].score | 0.17367523908615112 |
| keywords[15].display_name | Radiology |
| keywords[16].id | https://openalex.org/keywords/structural-engineering |
| keywords[16].score | 0.15477794408798218 |
| keywords[16].display_name | Structural engineering |
| keywords[17].id | https://openalex.org/keywords/engineering |
| keywords[17].score | 0.14626994729042053 |
| keywords[17].display_name | Engineering |
| keywords[18].id | https://openalex.org/keywords/aneurysm |
| keywords[18].score | 0.13635259866714478 |
| keywords[18].display_name | Aneurysm |
| language | en |
| locations[0].id | doi:10.1115/1.4051905 |
| locations[0].is_oa | False |
| locations[0].source.id | https://openalex.org/S4210187999 |
| locations[0].source.issn | 0148-0731, 1528-8951 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | 0148-0731 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | Journal of Biomechanical Engineering |
| locations[0].source.host_organization | https://openalex.org/P4310316053 |
| locations[0].source.host_organization_name | ASM International |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310316053 |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Journal of Biomechanical Engineering |
| locations[0].landing_page_url | https://doi.org/10.1115/1.4051905 |
| locations[1].id | pmid:34318314 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306525036 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | PubMed |
| locations[1].source.host_organization | https://openalex.org/I1299303238 |
| locations[1].source.host_organization_name | National Institutes of Health |
| locations[1].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | publishedVersion |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | True |
| locations[1].is_published | True |
| locations[1].raw_source_name | Journal of biomechanical engineering |
| locations[1].landing_page_url | https://pubmed.ncbi.nlm.nih.gov/34318314 |
| locations[2].id | pmh:oai:pubmedcentral.nih.gov:8420793 |
| locations[2].is_oa | True |
| locations[2].source.id | https://openalex.org/S2764455111 |
| locations[2].source.issn | |
| locations[2].source.type | repository |
| locations[2].source.is_oa | False |
| locations[2].source.issn_l | |
| locations[2].source.is_core | False |
| locations[2].source.is_in_doaj | False |
| locations[2].source.display_name | PubMed Central |
| locations[2].source.host_organization | https://openalex.org/I1299303238 |
| locations[2].source.host_organization_name | National Institutes of Health |
| locations[2].source.host_organization_lineage | https://openalex.org/I1299303238 |
| locations[2].license | |
| locations[2].pdf_url | |
| locations[2].version | submittedVersion |
| locations[2].raw_type | Text |
| locations[2].license_id | |
| locations[2].is_accepted | False |
| locations[2].is_published | False |
| locations[2].raw_source_name | J Biomech Eng |
| locations[2].landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8420793 |
| indexed_in | crossref, pubmed |
| authorships[0].author.id | https://openalex.org/A5091504679 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Balaji Rengarajan |
| authorships[0].countries | US |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I45438204 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 |
| authorships[0].institutions[0].id | https://openalex.org/I45438204 |
| authorships[0].institutions[0].ror | https://ror.org/01kd65564 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I45438204 |
| authorships[0].institutions[0].country_code | US |
| authorships[0].institutions[0].display_name | The University of Texas at San Antonio |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Balaji Rengarajan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 |
| authorships[1].author.id | https://openalex.org/A5102741596 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-7457-8604 |
| authorships[1].author.display_name | Sourav S. Patnaik |
| authorships[1].countries | US |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I162577319 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I162577319 |
| authorships[1].affiliations[1].raw_affiliation_string | Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 |
| authorships[1].institutions[0].id | https://openalex.org/I162577319 |
| authorships[1].institutions[0].ror | https://ror.org/049emcs32 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I162577319 |
| authorships[1].institutions[0].country_code | US |
| authorships[1].institutions[0].display_name | The University of Texas at Dallas |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Sourav S. Patnaik |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249; Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080 |
| authorships[2].author.id | https://openalex.org/A5033024512 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-0811-9482 |
| authorships[2].author.display_name | Ender A. Finol |
| authorships[2].countries | US |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45438204 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 |
| authorships[2].institutions[0].id | https://openalex.org/I45438204 |
| authorships[2].institutions[0].ror | https://ror.org/01kd65564 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I45438204 |
| authorships[2].institutions[0].country_code | US |
| authorships[2].institutions[0].display_name | The University of Texas at San Antonio |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Ender A. Finol |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Mechanical Engineering, University of Texas at San Antonio, San Antonio, TX 78249 |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8420793 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Predictive Analysis of Wall Stress in Abdominal Aortic Aneurysms Using a Neural Network Model |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10983 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2740 |
| primary_topic.subfield.display_name | Pulmonary and Respiratory Medicine |
| primary_topic.display_name | Aortic aneurysm repair treatments |
| related_works | https://openalex.org/W2074089485, https://openalex.org/W1991715599, https://openalex.org/W3132021049, https://openalex.org/W2034357478, https://openalex.org/W4386365924, https://openalex.org/W2969801794, https://openalex.org/W3199814180, https://openalex.org/W3105952268, https://openalex.org/W652992540, https://openalex.org/W48492188 |
| cited_by_count | 17 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 3 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 7 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 4 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 3 |
| locations_count | 3 |
| best_oa_location.id | pmh:oai:pubmedcentral.nih.gov:8420793 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S2764455111 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | PubMed Central |
| best_oa_location.source.host_organization | https://openalex.org/I1299303238 |
| best_oa_location.source.host_organization_name | National Institutes of Health |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I1299303238 |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | J Biomech Eng |
| best_oa_location.landing_page_url | https://www.ncbi.nlm.nih.gov/pmc/articles/8420793 |
| primary_location.id | doi:10.1115/1.4051905 |
| primary_location.is_oa | False |
| primary_location.source.id | https://openalex.org/S4210187999 |
| primary_location.source.issn | 0148-0731, 1528-8951 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | 0148-0731 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | Journal of Biomechanical Engineering |
| primary_location.source.host_organization | https://openalex.org/P4310316053 |
| primary_location.source.host_organization_name | ASM International |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310316053 |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Journal of Biomechanical Engineering |
| primary_location.landing_page_url | https://doi.org/10.1115/1.4051905 |
| publication_date | 2021-07-28 |
| publication_year | 2021 |
| referenced_works | https://openalex.org/W2099412125, https://openalex.org/W2471765470, https://openalex.org/W2041106466, https://openalex.org/W2043428292, https://openalex.org/W2140611701, https://openalex.org/W2079618061, https://openalex.org/W1983860525, https://openalex.org/W2033754708, https://openalex.org/W1985501016, https://openalex.org/W2065320761, https://openalex.org/W1986571704, https://openalex.org/W2199560589, https://openalex.org/W2610141691, https://openalex.org/W2553521558, https://openalex.org/W2935827281, https://openalex.org/W2143371086, https://openalex.org/W2084589391, https://openalex.org/W2168676487, https://openalex.org/W266904415, https://openalex.org/W2826193611, https://openalex.org/W2095083933, https://openalex.org/W2215513728, https://openalex.org/W2138503237, https://openalex.org/W2924104858, https://openalex.org/W4302795900, https://openalex.org/W2153571929, https://openalex.org/W2021835651, https://openalex.org/W1991279168, https://openalex.org/W1984587485, https://openalex.org/W2003237447, https://openalex.org/W2043939294, https://openalex.org/W2073252272, https://openalex.org/W2619299539, https://openalex.org/W2409139862, https://openalex.org/W2582743722, https://openalex.org/W1971697579, https://openalex.org/W2948510178, https://openalex.org/W2092217689, https://openalex.org/W2340463070, https://openalex.org/W2982183515, https://openalex.org/W2036599383, https://openalex.org/W2911361341, https://openalex.org/W2068172204, https://openalex.org/W2066159264, https://openalex.org/W1598914830, https://openalex.org/W2767407602, https://openalex.org/W2084300120, https://openalex.org/W2121394390, https://openalex.org/W2887712073, https://openalex.org/W192579252, https://openalex.org/W1556631438 |
| referenced_works_count | 51 |
| abstract_inverted_index.a | 16, 59, 97, 106, 128, 190, 216, 223, 252, 298, 330, 371, 406, 461 |
| abstract_inverted_index.13 | 412 |
| abstract_inverted_index.15 | 410 |
| abstract_inverted_index.50 | 120 |
| abstract_inverted_index.53 | 145 |
| abstract_inverted_index.98 | 117 |
| abstract_inverted_index.In | 77, 294 |
| abstract_inverted_index.NN | 174, 197, 233, 403, 458, 487, 502 |
| abstract_inverted_index.We | 104, 171, 227 |
| abstract_inverted_index.an | 178, 185 |
| abstract_inverted_index.as | 58, 213, 215, 364, 366, 475 |
| abstract_inverted_index.be | 56, 67 |
| abstract_inverted_index.by | 9, 94 |
| abstract_inverted_index.in | 69, 194, 428, 477 |
| abstract_inverted_index.is | 15 |
| abstract_inverted_index.of | 4, 11, 24, 62, 74, 85, 96, 109, 113, 131, 177, 219, 231, 264, 301, 316, 333, 348, 374, 389, 409, 434, 457, 468, 479, 486, 501 |
| abstract_inverted_index.to | 32, 47, 88, 127, 415, 430, 441, 491 |
| abstract_inverted_index.we | 81 |
| abstract_inverted_index.16% | 349 |
| abstract_inverted_index.17% | 317 |
| abstract_inverted_index.19% | 390 |
| abstract_inverted_index.20% | 355 |
| abstract_inverted_index.22% | 323 |
| abstract_inverted_index.23% | 396 |
| abstract_inverted_index.AAA | 91, 207, 423, 452, 469 |
| abstract_inverted_index.GAM | 328, 448 |
| abstract_inverted_index.GLM | 360 |
| abstract_inverted_index.The | 123, 196, 455, 483 |
| abstract_inverted_index.all | 210 |
| abstract_inverted_index.and | 119, 140, 148, 184, 202, 246, 251, 279, 285, 307, 322, 339, 354, 380, 395, 411, 421, 436, 447 |
| abstract_inverted_index.are | 489 |
| abstract_inverted_index.can | 55 |
| abstract_inverted_index.did | 361 |
| abstract_inverted_index.due | 31 |
| abstract_inverted_index.for | 41, 168, 205, 280, 291, 303, 309, 318, 324, 335, 341, 350, 356, 376, 382, 391, 397, 418, 450, 465, 504 |
| abstract_inverted_index.had | 329 |
| abstract_inverted_index.has | 27 |
| abstract_inverted_index.its | 42 |
| abstract_inverted_index.not | 362 |
| abstract_inverted_index.set | 218, 408, 433 |
| abstract_inverted_index.the | 21, 33, 37, 71, 78, 83, 149, 165, 169, 229, 232, 261, 266, 270, 275, 281, 304, 310, 319, 325, 336, 342, 351, 357, 367, 377, 383, 392, 398, 402, 419, 431, 445, 466, 499 |
| abstract_inverted_index.two | 114, 181, 236 |
| abstract_inverted_index.use | 84, 456 |
| abstract_inverted_index.was | 163, 427 |
| abstract_inverted_index.(17% | 290 |
| abstract_inverted_index.(NN) | 101 |
| abstract_inverted_index.(for | 274 |
| abstract_inverted_index.0.53 | 375 |
| abstract_inverted_index.0.59 | 302 |
| abstract_inverted_index.0.70 | 334, 381 |
| abstract_inverted_index.0.71 | 278 |
| abstract_inverted_index.0.77 | 308 |
| abstract_inverted_index.0.80 | 340 |
| abstract_inverted_index.GAM: | 247 |
| abstract_inverted_index.MARS | 296, 446 |
| abstract_inverted_index.SAWS | 157, 417, 443 |
| abstract_inverted_index.This | 426 |
| abstract_inverted_index.With | 260 |
| abstract_inverted_index.able | 46 |
| abstract_inverted_index.been | 28 |
| abstract_inverted_index.both | 206, 292 |
| abstract_inverted_index.deep | 191 |
| abstract_inverted_index.each | 451 |
| abstract_inverted_index.from | 143, 159, 222 |
| abstract_inverted_index.gold | 166 |
| abstract_inverted_index.lieu | 478 |
| abstract_inverted_index.mean | 272, 287, 299, 331, 372 |
| abstract_inverted_index.nine | 435 |
| abstract_inverted_index.risk | 2 |
| abstract_inverted_index.said | 75 |
| abstract_inverted_index.sets | 263 |
| abstract_inverted_index.that | 54 |
| abstract_inverted_index.this | 25 |
| abstract_inverted_index.wall | 13, 49, 92, 152, 470 |
| abstract_inverted_index.well | 214, 365 |
| abstract_inverted_index.were | 125, 155, 199 |
| abstract_inverted_index.with | 36, 235, 313, 345, 370, 386, 444, 493 |
| abstract_inverted_index.(GLM: | 256 |
| abstract_inverted_index.0.79) | 284 |
| abstract_inverted_index.AAAs. | 122 |
| abstract_inverted_index.Thus, | 44 |
| abstract_inverted_index.being | 45 |
| abstract_inverted_index.dense | 182 |
| abstract_inverted_index.eight | 437 |
| abstract_inverted_index.error | 289 |
| abstract_inverted_index.given | 498 |
| abstract_inverted_index.group | 277, 283, 306, 321, 338, 353, 379, 394, 496 |
| abstract_inverted_index.image | 64, 132 |
| abstract_inverted_index.input | 179 |
| abstract_inverted_index.layer | 187 |
| abstract_inverted_index.means | 10, 95 |
| abstract_inverted_index.model | 255 |
| abstract_inverted_index.novel | 98 |
| abstract_inverted_index.other | 368 |
| abstract_inverted_index.tools | 39 |
| abstract_inverted_index.using | 51, 188, 209, 472 |
| abstract_inverted_index.which | 144 |
| abstract_inverted_index.work, | 80 |
| abstract_inverted_index.would | 66 |
| abstract_inverted_index.(AAAs) | 8 |
| abstract_inverted_index.(MARS: | 241 |
| abstract_inverted_index.(SAWS) | 154 |
| abstract_inverted_index.Keras, | 189 |
| abstract_inverted_index.aortic | 6 |
| abstract_inverted_index.common | 17 |
| abstract_inverted_index.direct | 60 |
| abstract_inverted_index.errors | 315, 347, 388 |
| abstract_inverted_index.finite | 137, 160, 480 |
| abstract_inverted_index.group, | 312, 344, 385, 453 |
| abstract_inverted_index.group. | 327, 359, 400 |
| abstract_inverted_index.groups | 208 |
| abstract_inverted_index.images | 112, 124 |
| abstract_inverted_index.larger | 495 |
| abstract_inverted_index.layer, | 180 |
| abstract_inverted_index.linear | 253, 258 |
| abstract_inverted_index.lowest | 286 |
| abstract_inverted_index.model) | 250 |
| abstract_inverted_index.models | 175, 198, 234, 404, 488 |
| abstract_inverted_index.neural | 99 |
| abstract_inverted_index.output | 186 |
| abstract_inverted_index.review | 108 |
| abstract_inverted_index.sizes, | 497 |
| abstract_inverted_index.stress | 14, 50, 93, 153, 471 |
| abstract_inverted_index.volume | 135 |
| abstract_inverted_index.“big | 505 |
| abstract_inverted_index.Rupture | 1 |
| abstract_inverted_index.data” | 506 |
| abstract_inverted_index.element | 138, 161, 481 |
| abstract_inverted_index.greatly | 29 |
| abstract_inverted_index.groups, | 424 |
| abstract_inverted_index.groups: | 116 |
| abstract_inverted_index.highest | 271 |
| abstract_inverted_index.improve | 492 |
| abstract_inverted_index.indices | 87, 147, 220, 414, 439, 474 |
| abstract_inverted_index.layers, | 183 |
| abstract_inverted_index.library | 193 |
| abstract_inverted_index.limited | 30 |
| abstract_inverted_index.machine | 238 |
| abstract_inverted_index.markers | 53 |
| abstract_inverted_index.metrics | 485 |
| abstract_inverted_index.model). | 259 |
| abstract_inverted_index.network | 100 |
| abstract_inverted_index.outcome | 61 |
| abstract_inverted_index.patient | 115 |
| abstract_inverted_index.perform | 363 |
| abstract_inverted_index.predict | 89, 416, 442 |
| abstract_inverted_index.present | 79 |
| abstract_inverted_index.python. | 195 |
| abstract_inverted_index.reduced | 217, 262, 407, 432 |
| abstract_inverted_index.splines | 245 |
| abstract_inverted_index.subject | 126 |
| abstract_inverted_index.tested, | 201 |
| abstract_inverted_index.yielded | 297 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.However, | 20 |
| abstract_inverted_index.NN-based | 267 |
| abstract_inverted_index.adaptive | 243 |
| abstract_inverted_index.additive | 249 |
| abstract_inverted_index.analysis | 162 |
| abstract_inverted_index.approach | 26, 268 |
| abstract_inverted_index.averaged | 151 |
| abstract_inverted_index.clinical | 22, 63, 111 |
| abstract_inverted_index.compared | 228 |
| abstract_inverted_index.composed | 176 |
| abstract_inverted_index.contrast | 429 |
| abstract_inverted_index.estimate | 48 |
| abstract_inverted_index.existing | 110 |
| abstract_inverted_index.expected | 490 |
| abstract_inverted_index.geometry | 141 |
| abstract_inverted_index.groups). | 293 |
| abstract_inverted_index.indices, | 212, 265 |
| abstract_inverted_index.learning | 192, 239 |
| abstract_inverted_index.meshing, | 136 |
| abstract_inverted_index.modeling | 102, 459, 503 |
| abstract_inverted_index.protocol | 129 |
| abstract_inverted_index.relative | 288, 314, 346, 387 |
| abstract_inverted_index.required | 40, 405, 440 |
| abstract_inverted_index.standard | 167, 237 |
| abstract_inverted_index.trained, | 200 |
| abstract_inverted_index.variable | 224 |
| abstract_inverted_index.abdominal | 5 |
| abstract_inverted_index.aneurysms | 7 |
| abstract_inverted_index.approach. | 103 |
| abstract_inverted_index.conducted | 105 |
| abstract_inverted_index.contrast, | 295 |
| abstract_inverted_index.developed | 172 |
| abstract_inverted_index.estimated | 158 |
| abstract_inverted_index.exhibited | 269 |
| abstract_inverted_index.geometric | 86, 146, 211, 413, 438, 473 |
| abstract_inverted_index.improving | 70 |
| abstract_inverted_index.modeling, | 139 |
| abstract_inverted_index.modeling. | 482 |
| abstract_inverted_index.potential | 72 |
| abstract_inverted_index.promising | 462 |
| abstract_inverted_index.reduction | 225 |
| abstract_inverted_index.resulting | 221 |
| abstract_inverted_index.spatially | 150 |
| abstract_inverted_index.strategy. | 19, 76 |
| abstract_inverted_index.validated | 203 |
| abstract_inverted_index.algorithms | 240, 449 |
| abstract_inverted_index.assessment | 3 |
| abstract_inverted_index.associated | 35 |
| abstract_inverted_index.complexity | 34 |
| abstract_inverted_index.considered | 164 |
| abstract_inverted_index.consisting | 130 |
| abstract_inverted_index.estimation | 467 |
| abstract_inverted_index.procedure. | 226 |
| abstract_inverted_index.quantified | 57 |
| abstract_inverted_index.regression | 244, 254 |
| abstract_inverted_index.represents | 460 |
| abstract_inverted_index.algorithms, | 369 |
| abstract_inverted_index.alternative | 463 |
| abstract_inverted_index.calculated. | 156 |
| abstract_inverted_index.generalized | 248, 257 |
| abstract_inverted_index.methodology | 464 |
| abstract_inverted_index.performance | 230, 484 |
| abstract_inverted_index.processing, | 134 |
| abstract_inverted_index.quantifying | 12 |
| abstract_inverted_index.suitability | 500 |
| abstract_inverted_index.surrogates, | 476 |
| abstract_inverted_index.symptomatic | 121, 276, 305, 320, 337, 352, 378, 393, 420 |
| abstract_inverted_index.translation | 23 |
| abstract_inverted_index.advantageous | 68 |
| abstract_inverted_index.asymptomatic | 118, 282, 311, 326, 343, 358, 384, 399, 422 |
| abstract_inverted_index.feed-forward | 173 |
| abstract_inverted_index.investigated | 82 |
| abstract_inverted_index.multivariate | 242 |
| abstract_inverted_index.predictions. | 170 |
| abstract_inverted_index.segmentation | 65 |
| abstract_inverted_index.Nevertheless, | 401 |
| abstract_inverted_index.applications. | 507 |
| abstract_inverted_index.biomechanical | 18 |
| abstract_inverted_index.computational | 38 |
| abstract_inverted_index.independently | 204 |
| abstract_inverted_index.respectively. | 425, 454 |
| abstract_inverted_index.retrospective | 107 |
| abstract_inverted_index.segmentation, | 133 |
| abstract_inverted_index.significantly | 494 |
| abstract_inverted_index.implementation | 73 |
| abstract_inverted_index.goodness-of-fit | 273, 300, 332, 373 |
| abstract_inverted_index.implementation. | 43 |
| abstract_inverted_index.quantification, | 142 |
| abstract_inverted_index.nonbiomechanical | 52 |
| abstract_inverted_index.patient-specific | 90 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.88032285 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |