A predictive model of a growing fetus Article Swipe
YOU?
·
· 2022
· Open Access
·
· DOI: https://doi.org/10.1101/2022.12.22.22283844
Fetal growth is monitored periodically during pregnancy via ultrasound measurements of fetal dimensions such as femur length (FL), head circumference (HC), abdominal circumference (AC), and biparietal diameter (BPD). Multiple growth standards have been published for each of these, which are clinically used to place a fetus on a “growth chart”. These consist of percentile tables varying by weeks of gestation, computed from cohorts of “low-risk” women with healthy lifestyles, living conditions, and clinical parameters. Such charts are prescriptive of ideal growth, but not necessarily descriptive of diverse real-world populations where they may be used. Moreover, they are constructed by pooling all fetal measurements across the cohort, not based on a growth model, and therefore not necessarily predictive of growth of an individual fetus. We show that the Gompertz model, a standard model for constrained growth, with just three intuitive parameters, convincingly fits the growth of fetal ultrasound biometries. Two of these parameters— t 0 (the inflection time) and c (the rate of decrease of growth rate)—can be treated as universal to all fetuses, while the third parameter A can be modeled as an overall scale parameter specific to each fetus, which captures the individual variation in growth. On our cohort of 817 pregnant women (“Seethapathy cohort”), we show that not only can the value of A for each fetus be inferred from ultrasound data available by the second or the third trimester, but the weight of the baby at delivery can also be predicted with remarkable accuracy using these inferred Gompertz parameters. A model trained on the Seethapathy cohort performs well in estimating the birth weight in an independent validation cohort of 365 women, demonstrating the predictive power of the model. Moreover, we find that deviation from Gompertz-like growth is linked to neonatal complications. Finally, we show that the Gompertz growth curve is a close fit to the standards from WHO, NICHD and INTERGROWTH, with the optimal t 0 and c close to that in the Seethapathy cohort. We propose that the Gompertz formula be a basis for future growth standards, with almost all variation described by a single scale parameter A , which can serve either as a descriptor of mean or variance in population, or as a descriptor for growth of an individual fetus. Indeed, the formula is descriptive of typical growth, predictive of future growth, and may be used in prescriptive standards.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.1101/2022.12.22.22283844
- https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdf
- OA Status
- green
- References
- 22
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4312112523
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4312112523Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1101/2022.12.22.22283844Digital Object Identifier
- Title
-
A predictive model of a growing fetusWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2022Year of publication
- Publication date
-
2022-12-22Full publication date if available
- Authors
-
Chandrani Kumari, Gautam I. Menon, Leelavati Narlikar, Uma Ram, Rahul SiddharthanList of authors in order
- Landing page
-
https://doi.org/10.1101/2022.12.22.22283844Publisher landing page
- PDF URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdfDirect OA link when available
- Concepts
-
Gompertz function, Fetus, Cohort, Percentile, Obstetrics, Medicine, Ultrasound, Gestational age, Fetal head, Pregnancy, Statistics, Mathematics, Biology, Internal medicine, Radiology, GeneticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
22Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4312112523 |
|---|---|
| doi | https://doi.org/10.1101/2022.12.22.22283844 |
| ids.doi | https://doi.org/10.1101/2022.12.22.22283844 |
| ids.openalex | https://openalex.org/W4312112523 |
| fwci | 0.0 |
| type | preprint |
| title | A predictive model of a growing fetus |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10290 |
| topics[0].field.id | https://openalex.org/fields/27 |
| topics[0].field.display_name | Medicine |
| topics[0].score | 0.9998000264167786 |
| topics[0].domain.id | https://openalex.org/domains/4 |
| topics[0].domain.display_name | Health Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2729 |
| topics[0].subfield.display_name | Obstetrics and Gynecology |
| topics[0].display_name | Pregnancy and preeclampsia studies |
| topics[1].id | https://openalex.org/T11629 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.9994999766349792 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2735 |
| topics[1].subfield.display_name | Pediatrics, Perinatology and Child Health |
| topics[1].display_name | Birth, Development, and Health |
| topics[2].id | https://openalex.org/T10673 |
| topics[2].field.id | https://openalex.org/fields/27 |
| topics[2].field.display_name | Medicine |
| topics[2].score | 0.9957000017166138 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2729 |
| topics[2].subfield.display_name | Obstetrics and Gynecology |
| topics[2].display_name | Gestational Diabetes Research and Management |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C134463574 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6829335689544678 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q1011785 |
| concepts[0].display_name | Gompertz function |
| concepts[1].id | https://openalex.org/C172680121 |
| concepts[1].level | 3 |
| concepts[1].score | 0.6418896317481995 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q26513 |
| concepts[1].display_name | Fetus |
| concepts[2].id | https://openalex.org/C72563966 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6234657764434814 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q1303415 |
| concepts[2].display_name | Cohort |
| concepts[3].id | https://openalex.org/C122048520 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5838990807533264 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q2913954 |
| concepts[3].display_name | Percentile |
| concepts[4].id | https://openalex.org/C131872663 |
| concepts[4].level | 1 |
| concepts[4].score | 0.5564935207366943 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q5284418 |
| concepts[4].display_name | Obstetrics |
| concepts[5].id | https://openalex.org/C71924100 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5257704257965088 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11190 |
| concepts[5].display_name | Medicine |
| concepts[6].id | https://openalex.org/C143753070 |
| concepts[6].level | 2 |
| concepts[6].score | 0.4911133944988251 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q162564 |
| concepts[6].display_name | Ultrasound |
| concepts[7].id | https://openalex.org/C2778376644 |
| concepts[7].level | 3 |
| concepts[7].score | 0.4754897356033325 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q2253111 |
| concepts[7].display_name | Gestational age |
| concepts[8].id | https://openalex.org/C2779811377 |
| concepts[8].level | 4 |
| concepts[8].score | 0.44803664088249207 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q5445900 |
| concepts[8].display_name | Fetal head |
| concepts[9].id | https://openalex.org/C2779234561 |
| concepts[9].level | 2 |
| concepts[9].score | 0.3993048667907715 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q11995 |
| concepts[9].display_name | Pregnancy |
| concepts[10].id | https://openalex.org/C105795698 |
| concepts[10].level | 1 |
| concepts[10].score | 0.3641475439071655 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q12483 |
| concepts[10].display_name | Statistics |
| concepts[11].id | https://openalex.org/C33923547 |
| concepts[11].level | 0 |
| concepts[11].score | 0.3057161569595337 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[11].display_name | Mathematics |
| concepts[12].id | https://openalex.org/C86803240 |
| concepts[12].level | 0 |
| concepts[12].score | 0.1611914038658142 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[12].display_name | Biology |
| concepts[13].id | https://openalex.org/C126322002 |
| concepts[13].level | 1 |
| concepts[13].score | 0.14898741245269775 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q11180 |
| concepts[13].display_name | Internal medicine |
| concepts[14].id | https://openalex.org/C126838900 |
| concepts[14].level | 1 |
| concepts[14].score | 0.10233509540557861 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q77604 |
| concepts[14].display_name | Radiology |
| concepts[15].id | https://openalex.org/C54355233 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q7162 |
| concepts[15].display_name | Genetics |
| keywords[0].id | https://openalex.org/keywords/gompertz-function |
| keywords[0].score | 0.6829335689544678 |
| keywords[0].display_name | Gompertz function |
| keywords[1].id | https://openalex.org/keywords/fetus |
| keywords[1].score | 0.6418896317481995 |
| keywords[1].display_name | Fetus |
| keywords[2].id | https://openalex.org/keywords/cohort |
| keywords[2].score | 0.6234657764434814 |
| keywords[2].display_name | Cohort |
| keywords[3].id | https://openalex.org/keywords/percentile |
| keywords[3].score | 0.5838990807533264 |
| keywords[3].display_name | Percentile |
| keywords[4].id | https://openalex.org/keywords/obstetrics |
| keywords[4].score | 0.5564935207366943 |
| keywords[4].display_name | Obstetrics |
| keywords[5].id | https://openalex.org/keywords/medicine |
| keywords[5].score | 0.5257704257965088 |
| keywords[5].display_name | Medicine |
| keywords[6].id | https://openalex.org/keywords/ultrasound |
| keywords[6].score | 0.4911133944988251 |
| keywords[6].display_name | Ultrasound |
| keywords[7].id | https://openalex.org/keywords/gestational-age |
| keywords[7].score | 0.4754897356033325 |
| keywords[7].display_name | Gestational age |
| keywords[8].id | https://openalex.org/keywords/fetal-head |
| keywords[8].score | 0.44803664088249207 |
| keywords[8].display_name | Fetal head |
| keywords[9].id | https://openalex.org/keywords/pregnancy |
| keywords[9].score | 0.3993048667907715 |
| keywords[9].display_name | Pregnancy |
| keywords[10].id | https://openalex.org/keywords/statistics |
| keywords[10].score | 0.3641475439071655 |
| keywords[10].display_name | Statistics |
| keywords[11].id | https://openalex.org/keywords/mathematics |
| keywords[11].score | 0.3057161569595337 |
| keywords[11].display_name | Mathematics |
| keywords[12].id | https://openalex.org/keywords/biology |
| keywords[12].score | 0.1611914038658142 |
| keywords[12].display_name | Biology |
| keywords[13].id | https://openalex.org/keywords/internal-medicine |
| keywords[13].score | 0.14898741245269775 |
| keywords[13].display_name | Internal medicine |
| keywords[14].id | https://openalex.org/keywords/radiology |
| keywords[14].score | 0.10233509540557861 |
| keywords[14].display_name | Radiology |
| language | en |
| locations[0].id | doi:10.1101/2022.12.22.22283844 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306402567 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| locations[0].source.host_organization | https://openalex.org/I2750212522 |
| locations[0].source.host_organization_name | Cold Spring Harbor Laboratory |
| locations[0].source.host_organization_lineage | https://openalex.org/I2750212522 |
| locations[0].license | cc-by-nc-nd |
| locations[0].pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdf |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by-nc-nd |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.1101/2022.12.22.22283844 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5003812427 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-7107-7334 |
| authorships[0].author.display_name | Chandrani Kumari |
| authorships[0].countries | IN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I59611059 |
| authorships[0].affiliations[0].raw_affiliation_string | The Institute of Mathematical Sciences, Chennai, India |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I200207707 |
| authorships[0].affiliations[1].raw_affiliation_string | Homi Bhabha National Institute, Mumbai, India |
| authorships[0].institutions[0].id | https://openalex.org/I200207707 |
| authorships[0].institutions[0].ror | https://ror.org/02bv3zr67 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I200207707 |
| authorships[0].institutions[0].country_code | IN |
| authorships[0].institutions[0].display_name | Homi Bhabha National Institute |
| authorships[0].institutions[1].id | https://openalex.org/I59611059 |
| authorships[0].institutions[1].ror | https://ror.org/05078rg59 |
| authorships[0].institutions[1].type | facility |
| authorships[0].institutions[1].lineage | https://openalex.org/I59611059 |
| authorships[0].institutions[1].country_code | IN |
| authorships[0].institutions[1].display_name | Institute of Mathematical Sciences |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Chandrani Kumari |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Homi Bhabha National Institute, Mumbai, India, The Institute of Mathematical Sciences, Chennai, India |
| authorships[1].author.id | https://openalex.org/A5090340739 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-5528-4002 |
| authorships[1].author.display_name | Gautam I. Menon |
| authorships[1].countries | IN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I347237974 |
| authorships[1].affiliations[0].raw_affiliation_string | Departments of Physics and Biology, Ashoka University, Sonepat, India |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I59611059 |
| authorships[1].affiliations[1].raw_affiliation_string | The Institute of Mathematical Sciences, Chennai, India |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I200207707 |
| authorships[1].affiliations[2].raw_affiliation_string | Homi Bhabha National Institute, Mumbai, India |
| authorships[1].institutions[0].id | https://openalex.org/I347237974 |
| authorships[1].institutions[0].ror | https://ror.org/02j1xr113 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I347237974 |
| authorships[1].institutions[0].country_code | IN |
| authorships[1].institutions[0].display_name | Ashoka University |
| authorships[1].institutions[1].id | https://openalex.org/I200207707 |
| authorships[1].institutions[1].ror | https://ror.org/02bv3zr67 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I200207707 |
| authorships[1].institutions[1].country_code | IN |
| authorships[1].institutions[1].display_name | Homi Bhabha National Institute |
| authorships[1].institutions[2].id | https://openalex.org/I59611059 |
| authorships[1].institutions[2].ror | https://ror.org/05078rg59 |
| authorships[1].institutions[2].type | facility |
| authorships[1].institutions[2].lineage | https://openalex.org/I59611059 |
| authorships[1].institutions[2].country_code | IN |
| authorships[1].institutions[2].display_name | Institute of Mathematical Sciences |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Gautam I Menon |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | Departments of Physics and Biology, Ashoka University, Sonepat, India, Homi Bhabha National Institute, Mumbai, India, The Institute of Mathematical Sciences, Chennai, India |
| authorships[2].author.id | https://openalex.org/A5078875370 |
| authorships[2].author.orcid | https://orcid.org/0000-0001-6820-1878 |
| authorships[2].author.display_name | Leelavati Narlikar |
| authorships[2].countries | IN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181996519 |
| authorships[2].affiliations[0].raw_affiliation_string | Department of Data Science, Indian Institute of Science Education and Research, Pune, India |
| authorships[2].institutions[0].id | https://openalex.org/I181996519 |
| authorships[2].institutions[0].ror | https://ror.org/028qa3n13 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181996519 |
| authorships[2].institutions[0].country_code | IN |
| authorships[2].institutions[0].display_name | Indian Institute of Science Education and Research Pune |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Leelavati Narlikar |
| authorships[2].is_corresponding | True |
| authorships[2].raw_affiliation_strings | Department of Data Science, Indian Institute of Science Education and Research, Pune, India |
| authorships[3].author.id | https://openalex.org/A5069527116 |
| authorships[3].author.orcid | https://orcid.org/0000-0003-3886-4501 |
| authorships[3].author.display_name | Uma Ram |
| authorships[3].countries | IN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I4210164285 |
| authorships[3].affiliations[0].raw_affiliation_string | Obstetrics and Gynaecology, Seethapathy Clinic and Hospital, Chennai, India |
| authorships[3].institutions[0].id | https://openalex.org/I4210164285 |
| authorships[3].institutions[0].ror | https://ror.org/05jp4w275 |
| authorships[3].institutions[0].type | healthcare |
| authorships[3].institutions[0].lineage | https://openalex.org/I4210164285 |
| authorships[3].institutions[0].country_code | IN |
| authorships[3].institutions[0].display_name | Seethapathy Clinic and Hospital |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Uma Ram |
| authorships[3].is_corresponding | True |
| authorships[3].raw_affiliation_strings | Obstetrics and Gynaecology, Seethapathy Clinic and Hospital, Chennai, India |
| authorships[4].author.id | https://openalex.org/A5033302091 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-2233-0954 |
| authorships[4].author.display_name | Rahul Siddharthan |
| authorships[4].countries | IN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I200207707 |
| authorships[4].affiliations[0].raw_affiliation_string | Homi Bhabha National Institute, Mumbai, India |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I59611059 |
| authorships[4].affiliations[1].raw_affiliation_string | The Institute of Mathematical Sciences, Chennai, India |
| authorships[4].institutions[0].id | https://openalex.org/I200207707 |
| authorships[4].institutions[0].ror | https://ror.org/02bv3zr67 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I200207707 |
| authorships[4].institutions[0].country_code | IN |
| authorships[4].institutions[0].display_name | Homi Bhabha National Institute |
| authorships[4].institutions[1].id | https://openalex.org/I59611059 |
| authorships[4].institutions[1].ror | https://ror.org/05078rg59 |
| authorships[4].institutions[1].type | facility |
| authorships[4].institutions[1].lineage | https://openalex.org/I59611059 |
| authorships[4].institutions[1].country_code | IN |
| authorships[4].institutions[1].display_name | Institute of Mathematical Sciences |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Rahul Siddharthan |
| authorships[4].is_corresponding | True |
| authorships[4].raw_affiliation_strings | Homi Bhabha National Institute, Mumbai, India, The Institute of Mathematical Sciences, Chennai, India |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A predictive model of a growing fetus |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10290 |
| primary_topic.field.id | https://openalex.org/fields/27 |
| primary_topic.field.display_name | Medicine |
| primary_topic.score | 0.9998000264167786 |
| primary_topic.domain.id | https://openalex.org/domains/4 |
| primary_topic.domain.display_name | Health Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2729 |
| primary_topic.subfield.display_name | Obstetrics and Gynecology |
| primary_topic.display_name | Pregnancy and preeclampsia studies |
| related_works | https://openalex.org/W1987826597, https://openalex.org/W152192128, https://openalex.org/W193081795, https://openalex.org/W2358924152, https://openalex.org/W2595858485, https://openalex.org/W2075321878, https://openalex.org/W2381420691, https://openalex.org/W2139634432, https://openalex.org/W2437431345, https://openalex.org/W3024199866 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.1101/2022.12.22.22283844 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306402567 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| best_oa_location.source.host_organization | https://openalex.org/I2750212522 |
| best_oa_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| best_oa_location.license | cc-by-nc-nd |
| best_oa_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdf |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.1101/2022.12.22.22283844 |
| primary_location.id | doi:10.1101/2022.12.22.22283844 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306402567 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | bioRxiv (Cold Spring Harbor Laboratory) |
| primary_location.source.host_organization | https://openalex.org/I2750212522 |
| primary_location.source.host_organization_name | Cold Spring Harbor Laboratory |
| primary_location.source.host_organization_lineage | https://openalex.org/I2750212522 |
| primary_location.license | cc-by-nc-nd |
| primary_location.pdf_url | https://www.medrxiv.org/content/medrxiv/early/2022/12/22/2022.12.22.22283844.full.pdf |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by-nc-nd |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.1101/2022.12.22.22283844 |
| publication_date | 2022-12-22 |
| publication_year | 2022 |
| referenced_works | https://openalex.org/W2793911400, https://openalex.org/W2745177570, https://openalex.org/W1518577797, https://openalex.org/W2022707347, https://openalex.org/W2580088840, https://openalex.org/W2791186559, https://openalex.org/W2134751634, https://openalex.org/W2777539863, https://openalex.org/W2006389533, https://openalex.org/W2127537121, https://openalex.org/W2416569722, https://openalex.org/W2132504853, https://openalex.org/W2081084899, https://openalex.org/W2045935252, https://openalex.org/W2622556140, https://openalex.org/W19120011, https://openalex.org/W1810949827, https://openalex.org/W1968532354, https://openalex.org/W2789413961, https://openalex.org/W2952458728, https://openalex.org/W2797103067, https://openalex.org/W3126144365 |
| referenced_works_count | 22 |
| abstract_inverted_index., | 353 |
| abstract_inverted_index.0 | 154, 319 |
| abstract_inverted_index.A | 178, 216, 253, 352 |
| abstract_inverted_index.a | 45, 48, 110, 130, 304, 336, 348, 359, 369 |
| abstract_inverted_index.c | 159, 321 |
| abstract_inverted_index.t | 153, 318 |
| abstract_inverted_index.On | 198 |
| abstract_inverted_index.We | 124, 329 |
| abstract_inverted_index.an | 121, 183, 268, 374 |
| abstract_inverted_index.as | 15, 169, 182, 358, 368 |
| abstract_inverted_index.at | 239 |
| abstract_inverted_index.be | 93, 167, 180, 220, 243, 335, 391 |
| abstract_inverted_index.by | 57, 99, 226, 347 |
| abstract_inverted_index.in | 196, 262, 267, 325, 365, 393 |
| abstract_inverted_index.is | 3, 290, 303, 380 |
| abstract_inverted_index.of | 11, 37, 53, 59, 64, 79, 86, 118, 120, 145, 150, 162, 164, 201, 215, 236, 272, 279, 361, 373, 382, 386 |
| abstract_inverted_index.on | 47, 109, 256 |
| abstract_inverted_index.or | 229, 363, 367 |
| abstract_inverted_index.to | 43, 171, 188, 292, 307, 323 |
| abstract_inverted_index.we | 207, 283, 296 |
| abstract_inverted_index.365 | 273 |
| abstract_inverted_index.817 | 202 |
| abstract_inverted_index.Two | 149 |
| abstract_inverted_index.all | 101, 172, 344 |
| abstract_inverted_index.and | 25, 72, 113, 158, 313, 320, 389 |
| abstract_inverted_index.are | 40, 77, 97 |
| abstract_inverted_index.but | 82, 233 |
| abstract_inverted_index.can | 179, 212, 241, 355 |
| abstract_inverted_index.fit | 306 |
| abstract_inverted_index.for | 35, 133, 217, 338, 371 |
| abstract_inverted_index.may | 92, 390 |
| abstract_inverted_index.not | 83, 107, 115, 210 |
| abstract_inverted_index.our | 199 |
| abstract_inverted_index.the | 105, 127, 143, 175, 193, 213, 227, 230, 234, 237, 257, 264, 276, 280, 299, 308, 316, 326, 332, 378 |
| abstract_inverted_index.via | 8 |
| abstract_inverted_index.(the | 155, 160 |
| abstract_inverted_index.Such | 75 |
| abstract_inverted_index.WHO, | 311 |
| abstract_inverted_index.also | 242 |
| abstract_inverted_index.baby | 238 |
| abstract_inverted_index.been | 33 |
| abstract_inverted_index.data | 224 |
| abstract_inverted_index.each | 36, 189, 218 |
| abstract_inverted_index.find | 284 |
| abstract_inverted_index.fits | 142 |
| abstract_inverted_index.from | 62, 222, 287, 310 |
| abstract_inverted_index.have | 32 |
| abstract_inverted_index.head | 19 |
| abstract_inverted_index.just | 137 |
| abstract_inverted_index.mean | 362 |
| abstract_inverted_index.only | 211 |
| abstract_inverted_index.rate | 161 |
| abstract_inverted_index.show | 125, 208, 297 |
| abstract_inverted_index.such | 14 |
| abstract_inverted_index.that | 126, 209, 285, 298, 324, 331 |
| abstract_inverted_index.they | 91, 96 |
| abstract_inverted_index.used | 42, 392 |
| abstract_inverted_index.well | 261 |
| abstract_inverted_index.with | 67, 136, 245, 315, 342 |
| abstract_inverted_index.(AC), | 24 |
| abstract_inverted_index.(FL), | 18 |
| abstract_inverted_index.(HC), | 21 |
| abstract_inverted_index.Fetal | 1 |
| abstract_inverted_index.NICHD | 312 |
| abstract_inverted_index.These | 51 |
| abstract_inverted_index.based | 108 |
| abstract_inverted_index.basis | 337 |
| abstract_inverted_index.birth | 265 |
| abstract_inverted_index.close | 305, 322 |
| abstract_inverted_index.curve | 302 |
| abstract_inverted_index.femur | 16 |
| abstract_inverted_index.fetal | 12, 102, 146 |
| abstract_inverted_index.fetus | 46, 219 |
| abstract_inverted_index.ideal | 80 |
| abstract_inverted_index.model | 132, 254 |
| abstract_inverted_index.place | 44 |
| abstract_inverted_index.power | 278 |
| abstract_inverted_index.scale | 185, 350 |
| abstract_inverted_index.serve | 356 |
| abstract_inverted_index.these | 151, 249 |
| abstract_inverted_index.third | 176, 231 |
| abstract_inverted_index.three | 138 |
| abstract_inverted_index.time) | 157 |
| abstract_inverted_index.used. | 94 |
| abstract_inverted_index.using | 248 |
| abstract_inverted_index.value | 214 |
| abstract_inverted_index.weeks | 58 |
| abstract_inverted_index.where | 90 |
| abstract_inverted_index.which | 39, 191, 354 |
| abstract_inverted_index.while | 174 |
| abstract_inverted_index.women | 66, 204 |
| abstract_inverted_index.(BPD). | 28 |
| abstract_inverted_index.across | 104 |
| abstract_inverted_index.almost | 343 |
| abstract_inverted_index.charts | 76 |
| abstract_inverted_index.cohort | 200, 259, 271 |
| abstract_inverted_index.during | 6 |
| abstract_inverted_index.either | 357 |
| abstract_inverted_index.fetus, | 190 |
| abstract_inverted_index.fetus. | 123, 376 |
| abstract_inverted_index.future | 339, 387 |
| abstract_inverted_index.growth | 2, 30, 111, 119, 144, 165, 289, 301, 340, 372 |
| abstract_inverted_index.length | 17 |
| abstract_inverted_index.linked | 291 |
| abstract_inverted_index.living | 70 |
| abstract_inverted_index.model, | 112, 129 |
| abstract_inverted_index.model. | 281 |
| abstract_inverted_index.second | 228 |
| abstract_inverted_index.single | 349 |
| abstract_inverted_index.tables | 55 |
| abstract_inverted_index.these, | 38 |
| abstract_inverted_index.weight | 235, 266 |
| abstract_inverted_index.women, | 274 |
| abstract_inverted_index.Indeed, | 377 |
| abstract_inverted_index.cohort, | 106 |
| abstract_inverted_index.cohort. | 328 |
| abstract_inverted_index.cohorts | 63 |
| abstract_inverted_index.consist | 52 |
| abstract_inverted_index.diverse | 87 |
| abstract_inverted_index.formula | 334, 379 |
| abstract_inverted_index.growth, | 81, 135, 384, 388 |
| abstract_inverted_index.growth. | 197 |
| abstract_inverted_index.healthy | 68 |
| abstract_inverted_index.modeled | 181 |
| abstract_inverted_index.optimal | 317 |
| abstract_inverted_index.overall | 184 |
| abstract_inverted_index.pooling | 100 |
| abstract_inverted_index.propose | 330 |
| abstract_inverted_index.trained | 255 |
| abstract_inverted_index.treated | 168 |
| abstract_inverted_index.typical | 383 |
| abstract_inverted_index.varying | 56 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Finally, | 295 |
| abstract_inverted_index.Gompertz | 128, 251, 300, 333 |
| abstract_inverted_index.Multiple | 29 |
| abstract_inverted_index.accuracy | 247 |
| abstract_inverted_index.captures | 192 |
| abstract_inverted_index.clinical | 73 |
| abstract_inverted_index.computed | 61 |
| abstract_inverted_index.decrease | 163 |
| abstract_inverted_index.delivery | 240 |
| abstract_inverted_index.diameter | 27 |
| abstract_inverted_index.fetuses, | 173 |
| abstract_inverted_index.inferred | 221, 250 |
| abstract_inverted_index.neonatal | 293 |
| abstract_inverted_index.performs | 260 |
| abstract_inverted_index.pregnant | 203 |
| abstract_inverted_index.specific | 187 |
| abstract_inverted_index.standard | 131 |
| abstract_inverted_index.variance | 364 |
| abstract_inverted_index.Moreover, | 95, 282 |
| abstract_inverted_index.abdominal | 22 |
| abstract_inverted_index.available | 225 |
| abstract_inverted_index.chart”. | 50 |
| abstract_inverted_index.described | 346 |
| abstract_inverted_index.deviation | 286 |
| abstract_inverted_index.intuitive | 139 |
| abstract_inverted_index.monitored | 4 |
| abstract_inverted_index.parameter | 177, 186, 351 |
| abstract_inverted_index.predicted | 244 |
| abstract_inverted_index.pregnancy | 7 |
| abstract_inverted_index.published | 34 |
| abstract_inverted_index.standards | 31, 309 |
| abstract_inverted_index.therefore | 114 |
| abstract_inverted_index.universal | 170 |
| abstract_inverted_index.variation | 195, 345 |
| abstract_inverted_index.“growth | 49 |
| abstract_inverted_index.biparietal | 26 |
| abstract_inverted_index.clinically | 41 |
| abstract_inverted_index.descriptor | 360, 370 |
| abstract_inverted_index.dimensions | 13 |
| abstract_inverted_index.estimating | 263 |
| abstract_inverted_index.gestation, | 60 |
| abstract_inverted_index.individual | 122, 194, 375 |
| abstract_inverted_index.inflection | 156 |
| abstract_inverted_index.percentile | 54 |
| abstract_inverted_index.predictive | 117, 277, 385 |
| abstract_inverted_index.real-world | 88 |
| abstract_inverted_index.remarkable | 246 |
| abstract_inverted_index.standards, | 341 |
| abstract_inverted_index.standards. | 395 |
| abstract_inverted_index.trimester, | 232 |
| abstract_inverted_index.ultrasound | 9, 147, 223 |
| abstract_inverted_index.validation | 270 |
| abstract_inverted_index.Seethapathy | 258, 327 |
| abstract_inverted_index.biometries. | 148 |
| abstract_inverted_index.cohort”), | 206 |
| abstract_inverted_index.conditions, | 71 |
| abstract_inverted_index.constrained | 134 |
| abstract_inverted_index.constructed | 98 |
| abstract_inverted_index.descriptive | 85, 381 |
| abstract_inverted_index.independent | 269 |
| abstract_inverted_index.lifestyles, | 69 |
| abstract_inverted_index.necessarily | 84, 116 |
| abstract_inverted_index.parameters, | 140 |
| abstract_inverted_index.parameters. | 74, 252 |
| abstract_inverted_index.population, | 366 |
| abstract_inverted_index.populations | 89 |
| abstract_inverted_index.rate)—can | 166 |
| abstract_inverted_index.INTERGROWTH, | 314 |
| abstract_inverted_index.convincingly | 141 |
| abstract_inverted_index.measurements | 10, 103 |
| abstract_inverted_index.periodically | 5 |
| abstract_inverted_index.prescriptive | 78, 394 |
| abstract_inverted_index.Gompertz-like | 288 |
| abstract_inverted_index.circumference | 20, 23 |
| abstract_inverted_index.demonstrating | 275 |
| abstract_inverted_index.parameters— | 152 |
| abstract_inverted_index.complications. | 294 |
| abstract_inverted_index.“low-risk” | 65 |
| abstract_inverted_index.(“Seethapathy | 205 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5069527116, https://openalex.org/A5078875370, https://openalex.org/A5033302091 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| corresponding_institution_ids | https://openalex.org/I181996519, https://openalex.org/I200207707, https://openalex.org/I4210164285, https://openalex.org/I59611059 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/3 |
| sustainable_development_goals[0].score | 0.7799999713897705 |
| sustainable_development_goals[0].display_name | Good health and well-being |
| citation_normalized_percentile.value | 0.24258094 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |