A preprocessing Shapley value-based approach to detect relevant and disparity prone features in machine learning Article Swipe
Guilherme Dean Pelegrina
,
Miguel Couceiro
,
Leonardo Tomazeli Duarte
·
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3630106.3658905
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1145/3630106.3658905
International audience
Related Topics
Concepts
Metadata
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1145/3630106.3658905
- https://dl.acm.org/doi/pdf/10.1145/3630106.3658905
- OA Status
- gold
- Cited By
- 1
- References
- 57
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4396786581
All OpenAlex metadata
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4396786581Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1145/3630106.3658905Digital Object Identifier
- Title
-
A preprocessing Shapley value-based approach to detect relevant and disparity prone features in machine learningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-06-03Full publication date if available
- Authors
-
Guilherme Dean Pelegrina, Miguel Couceiro, Leonardo Tomazeli DuarteList of authors in order
- Landing page
-
https://doi.org/10.1145/3630106.3658905Publisher landing page
- PDF URL
-
https://dl.acm.org/doi/pdf/10.1145/3630106.3658905Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://dl.acm.org/doi/pdf/10.1145/3630106.3658905Direct OA link when available
- Concepts
-
Computer science, Salient, Transparency (behavior), Preprocessor, Machine learning, Artificial intelligence, Value (mathematics), Data mining, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
57Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4396786581 |
|---|---|
| doi | https://doi.org/10.1145/3630106.3658905 |
| ids.doi | https://doi.org/10.1145/3630106.3658905 |
| ids.openalex | https://openalex.org/W4396786581 |
| fwci | 1.06278649 |
| type | article |
| title | A preprocessing Shapley value-based approach to detect relevant and disparity prone features in machine learning |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 289 |
| biblio.first_page | 279 |
| topics[0].id | https://openalex.org/T10883 |
| topics[0].field.id | https://openalex.org/fields/33 |
| topics[0].field.display_name | Social Sciences |
| topics[0].score | 0.9965999722480774 |
| topics[0].domain.id | https://openalex.org/domains/2 |
| topics[0].domain.display_name | Social Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/3311 |
| topics[0].subfield.display_name | Safety Research |
| topics[0].display_name | Ethics and Social Impacts of AI |
| topics[1].id | https://openalex.org/T12026 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9909999966621399 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Explainable Artificial Intelligence (XAI) |
| topics[2].id | https://openalex.org/T13051 |
| topics[2].field.id | https://openalex.org/fields/33 |
| topics[2].field.display_name | Social Sciences |
| topics[2].score | 0.9284999966621399 |
| topics[2].domain.id | https://openalex.org/domains/2 |
| topics[2].domain.display_name | Social Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3312 |
| topics[2].subfield.display_name | Sociology and Political Science |
| topics[2].display_name | Qualitative Comparative Analysis Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C41008148 |
| concepts[0].level | 0 |
| concepts[0].score | 0.7302299737930298 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[0].display_name | Computer science |
| concepts[1].id | https://openalex.org/C2780719617 |
| concepts[1].level | 2 |
| concepts[1].score | 0.6917023658752441 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1030752 |
| concepts[1].display_name | Salient |
| concepts[2].id | https://openalex.org/C2780233690 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6397039890289307 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q535347 |
| concepts[2].display_name | Transparency (behavior) |
| concepts[3].id | https://openalex.org/C34736171 |
| concepts[3].level | 2 |
| concepts[3].score | 0.6255661249160767 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q918333 |
| concepts[3].display_name | Preprocessor |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.53912752866745 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C154945302 |
| concepts[5].level | 1 |
| concepts[5].score | 0.5012540817260742 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[5].display_name | Artificial intelligence |
| concepts[6].id | https://openalex.org/C2776291640 |
| concepts[6].level | 2 |
| concepts[6].score | 0.42037463188171387 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q2912517 |
| concepts[6].display_name | Value (mathematics) |
| concepts[7].id | https://openalex.org/C124101348 |
| concepts[7].level | 1 |
| concepts[7].score | 0.32295167446136475 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[7].display_name | Data mining |
| concepts[8].id | https://openalex.org/C38652104 |
| concepts[8].level | 1 |
| concepts[8].score | 0.16562819480895996 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[8].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/computer-science |
| keywords[0].score | 0.7302299737930298 |
| keywords[0].display_name | Computer science |
| keywords[1].id | https://openalex.org/keywords/salient |
| keywords[1].score | 0.6917023658752441 |
| keywords[1].display_name | Salient |
| keywords[2].id | https://openalex.org/keywords/transparency |
| keywords[2].score | 0.6397039890289307 |
| keywords[2].display_name | Transparency (behavior) |
| keywords[3].id | https://openalex.org/keywords/preprocessor |
| keywords[3].score | 0.6255661249160767 |
| keywords[3].display_name | Preprocessor |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.53912752866745 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[5].score | 0.5012540817260742 |
| keywords[5].display_name | Artificial intelligence |
| keywords[6].id | https://openalex.org/keywords/value |
| keywords[6].score | 0.42037463188171387 |
| keywords[6].display_name | Value (mathematics) |
| keywords[7].id | https://openalex.org/keywords/data-mining |
| keywords[7].score | 0.32295167446136475 |
| keywords[7].display_name | Data mining |
| keywords[8].id | https://openalex.org/keywords/computer-security |
| keywords[8].score | 0.16562819480895996 |
| keywords[8].display_name | Computer security |
| language | en |
| locations[0].id | doi:10.1145/3630106.3658905 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | https://dl.acm.org/doi/pdf/10.1145/3630106.3658905 |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | The 2024 ACM Conference on Fairness Accountability and Transparency |
| locations[0].landing_page_url | https://doi.org/10.1145/3630106.3658905 |
| locations[1].id | pmh:oai:HAL:hal-04568343v1 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306402512 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | HAL (Le Centre pour la Communication Scientifique Directe) |
| locations[1].source.host_organization | https://openalex.org/I1294671590 |
| locations[1].source.host_organization_name | Centre National de la Recherche Scientifique |
| locations[1].source.host_organization_lineage | https://openalex.org/I1294671590 |
| locations[1].license | cc-by |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Conference papers |
| locations[1].license_id | https://openalex.org/licenses/cc-by |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT 2024), Fabro Steibel, Meg Young, Ricardo Baeza-Yates, Jun 2024, Rio de Janeiro (BR), Brazil. pp.279-289, ⟨10.1145/3630106.3658905⟩ |
| locations[1].landing_page_url | https://inria.hal.science/hal-04568343 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5040377739 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7301-6167 |
| authorships[0].author.display_name | Guilherme Dean Pelegrina |
| authorships[0].countries | BR |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I181391015, https://openalex.org/I18167132 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Applied Sciences, University of Campinas, Brazil and Mackenzie Presbyterian University, Brazil |
| authorships[0].institutions[0].id | https://openalex.org/I181391015 |
| authorships[0].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[0].institutions[0].country_code | BR |
| authorships[0].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[0].institutions[1].id | https://openalex.org/I18167132 |
| authorships[0].institutions[1].ror | https://ror.org/006nc8n95 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I18167132 |
| authorships[0].institutions[1].country_code | BR |
| authorships[0].institutions[1].display_name | Universidade Presbiteriana Mackenzie |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guilherme Dean Pelegrina |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Applied Sciences, University of Campinas, Brazil and Mackenzie Presbyterian University, Brazil |
| authorships[1].author.id | https://openalex.org/A5066732273 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-2316-7623 |
| authorships[1].author.display_name | Miguel Couceiro |
| authorships[1].countries | FR, PT |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I121345201, https://openalex.org/I1294671590, https://openalex.org/I141596103, https://openalex.org/I4210121838, https://openalex.org/I90183372 |
| authorships[1].affiliations[0].raw_affiliation_string | CNRS, LORIA, Université de Lorraine, France and INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal |
| authorships[1].institutions[0].id | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].ror | https://ror.org/02feahw73 |
| authorships[1].institutions[0].type | government |
| authorships[1].institutions[0].lineage | https://openalex.org/I1294671590 |
| authorships[1].institutions[0].country_code | FR |
| authorships[1].institutions[0].display_name | Centre National de la Recherche Scientifique |
| authorships[1].institutions[1].id | https://openalex.org/I4210121838 |
| authorships[1].institutions[1].ror | https://ror.org/02vnf0c38 |
| authorships[1].institutions[1].type | facility |
| authorships[1].institutions[1].lineage | https://openalex.org/I1294671590, https://openalex.org/I1294671590, https://openalex.org/I1326498283, https://openalex.org/I277688954, https://openalex.org/I4210107720, https://openalex.org/I4210121838, https://openalex.org/I4210159245, https://openalex.org/I90183372 |
| authorships[1].institutions[1].country_code | FR |
| authorships[1].institutions[1].display_name | Laboratoire Lorrain de Recherche en Informatique et ses Applications |
| authorships[1].institutions[2].id | https://openalex.org/I90183372 |
| authorships[1].institutions[2].ror | https://ror.org/04vfs2w97 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I90183372 |
| authorships[1].institutions[2].country_code | FR |
| authorships[1].institutions[2].display_name | Université de Lorraine |
| authorships[1].institutions[3].id | https://openalex.org/I121345201 |
| authorships[1].institutions[3].ror | https://ror.org/04mqy3p58 |
| authorships[1].institutions[3].type | nonprofit |
| authorships[1].institutions[3].lineage | https://openalex.org/I121345201, https://openalex.org/I4210125590 |
| authorships[1].institutions[3].country_code | PT |
| authorships[1].institutions[3].display_name | Instituto de Engenharia de Sistemas e Computadores Investigação e Desenvolvimento |
| authorships[1].institutions[4].id | https://openalex.org/I141596103 |
| authorships[1].institutions[4].ror | https://ror.org/01c27hj86 |
| authorships[1].institutions[4].type | education |
| authorships[1].institutions[4].lineage | https://openalex.org/I141596103 |
| authorships[1].institutions[4].country_code | PT |
| authorships[1].institutions[4].display_name | University of Lisbon |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Miguel Couceiro |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | CNRS, LORIA, Université de Lorraine, France and INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Portugal |
| authorships[2].author.id | https://openalex.org/A5047456733 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-0290-0080 |
| authorships[2].author.display_name | Leonardo Tomazeli Duarte |
| authorships[2].countries | BR |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I181391015 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Applied Sciences, University of Campinas, Brazil |
| authorships[2].institutions[0].id | https://openalex.org/I181391015 |
| authorships[2].institutions[0].ror | https://ror.org/04wffgt70 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I181391015 |
| authorships[2].institutions[0].country_code | BR |
| authorships[2].institutions[0].display_name | Universidade Estadual de Campinas (UNICAMP) |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Leonardo Tomazeli Duarte |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Applied Sciences, University of Campinas, Brazil |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://dl.acm.org/doi/pdf/10.1145/3630106.3658905 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-05-10T00:00:00 |
| display_name | A preprocessing Shapley value-based approach to detect relevant and disparity prone features in machine learning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10883 |
| primary_topic.field.id | https://openalex.org/fields/33 |
| primary_topic.field.display_name | Social Sciences |
| primary_topic.score | 0.9965999722480774 |
| primary_topic.domain.id | https://openalex.org/domains/2 |
| primary_topic.domain.display_name | Social Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/3311 |
| primary_topic.subfield.display_name | Safety Research |
| primary_topic.display_name | Ethics and Social Impacts of AI |
| related_works | https://openalex.org/W2329500892, https://openalex.org/W4382930947, https://openalex.org/W28991112, https://openalex.org/W3081288631, https://openalex.org/W3152382318, https://openalex.org/W2370726991, https://openalex.org/W3004686567, https://openalex.org/W2738656338, https://openalex.org/W2603787370, https://openalex.org/W2555400967 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1145/3630106.3658905 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3630106.3658905 |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | proceedings-article |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | The 2024 ACM Conference on Fairness Accountability and Transparency |
| best_oa_location.landing_page_url | https://doi.org/10.1145/3630106.3658905 |
| primary_location.id | doi:10.1145/3630106.3658905 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | https://dl.acm.org/doi/pdf/10.1145/3630106.3658905 |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | The 2024 ACM Conference on Fairness Accountability and Transparency |
| primary_location.landing_page_url | https://doi.org/10.1145/3630106.3658905 |
| publication_date | 2024-06-03 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W3146613606, https://openalex.org/W2805655805, https://openalex.org/W3211208090, https://openalex.org/W4226022484, https://openalex.org/W2883468738, https://openalex.org/W6605758687, https://openalex.org/W2116666691, https://openalex.org/W2797800832, https://openalex.org/W3208152093, https://openalex.org/W2979506454, https://openalex.org/W2127538534, https://openalex.org/W2103459159, https://openalex.org/W2156204103, https://openalex.org/W3207627539, https://openalex.org/W2008818676, https://openalex.org/W3123056373, https://openalex.org/W4226346920, https://openalex.org/W4214634230, https://openalex.org/W1638081485, https://openalex.org/W2787955716, https://openalex.org/W3121787084, https://openalex.org/W2101753511, https://openalex.org/W4214835294, https://openalex.org/W4298289188, https://openalex.org/W1971916086, https://openalex.org/W2999615587, https://openalex.org/W2618851150, https://openalex.org/W2892741787, https://openalex.org/W3082455399, https://openalex.org/W3133726592, https://openalex.org/W3157730516, https://openalex.org/W3126453897, https://openalex.org/W3135649946, https://openalex.org/W2997591727, https://openalex.org/W4388657765, https://openalex.org/W4385223560, https://openalex.org/W4386865177, https://openalex.org/W4384284068, https://openalex.org/W4285605356, https://openalex.org/W3135028703, https://openalex.org/W6678992168, https://openalex.org/W2101267652, https://openalex.org/W2726539084, https://openalex.org/W2925507233, https://openalex.org/W2809878087, https://openalex.org/W2996404781, https://openalex.org/W3203878893, https://openalex.org/W108417620, https://openalex.org/W4289258088, https://openalex.org/W2963116854, https://openalex.org/W2962862931, https://openalex.org/W3105959310, https://openalex.org/W4287200665, https://openalex.org/W2127658298, https://openalex.org/W3195149063, https://openalex.org/W2560674852, https://openalex.org/W2561618607 |
| referenced_works_count | 57 |
| abstract_inverted_index.audience | 1 |
| abstract_inverted_index.International | 0 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 3 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile.value | 0.71583874 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |