A-pruning: a lightweight pineapple flower counting network based on filter pruning Article Swipe
YOU?
·
· 2023
· Open Access
·
· DOI: https://doi.org/10.1007/s40747-023-01261-7
During pineapple cultivation, detecting and counting the number of pineapple flowers in real time and estimating the yield are essential. Deep learning methods are more efficient in real-time performance than traditional manual detection. However, existing deep learning models are characterized by low detection speeds and cannot be applied in real time on mobile devices. This paper presents a lightweight model in which filter pruning compresses the YOLOv5 network. An adaptive batch normalization layer evaluation mechanism is introduced to the pruning process to evaluate the performance of the subnetwork. With this approach, the network with the best performance can be found quickly after pruning. Then, an efficient channel attention mechanism is added for the pruned network to constitute a new YOLOv5_E network. Our findings demonstrate that the proposed YOLOv5_E network attains an accuracy of 71.7% with a mere 1.7 M parameters, a model size of 3.8 MB, and an impressive running speed of 178 frames per second. Compared to the original YOLOv5, YOLOv5_E shows a 0.9% marginal decrease in accuracy; while, the number of parameters and the model size are reduced by 75.8% and 73.8%, respectively. Moreover, the running speed of YOLOv5_E is nearly twice that of the original. Among the ten networks evaluated, YOLOv5_E boasts the fastest detection speed and ranks second in detection accuracy. Furthermore, YOLOv5_E can be integrated with StrongSORT for real-time detection and counting on mobile devices. We validated this on the NVIDIA Jetson Xavier NX development board, where it achieved an average detection speed of 24 frames per second. The proposed YOLOv5_E network can be effectively used on agricultural equipment such as unmanned aerial vehicles, providing technical support for the detection and counting of crops on mobile devices.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.1007/s40747-023-01261-7
- https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdf
- OA Status
- gold
- Cited By
- 14
- References
- 46
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4387847981
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4387847981Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1007/s40747-023-01261-7Digital Object Identifier
- Title
-
A-pruning: a lightweight pineapple flower counting network based on filter pruningWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2023Year of publication
- Publication date
-
2023-10-21Full publication date if available
- Authors
-
Guoyan Yu, Ruilin Cai, Yingtong Luo, Mingxin Hou, Ruoling DengList of authors in order
- Landing page
-
https://doi.org/10.1007/s40747-023-01261-7Publisher landing page
- PDF URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdfDirect link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdfDirect OA link when available
- Concepts
-
Pruning, Computer science, Normalization (sociology), Subnetwork, Artificial intelligence, Filter (signal processing), Speedup, Pattern recognition (psychology), Algorithm, Parallel computing, Computer vision, Biology, Sociology, Anthropology, Agronomy, Computer securityTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
14Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 11, 2024: 3Per-year citation counts (last 5 years)
- References (count)
-
46Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4387847981 |
|---|---|
| doi | https://doi.org/10.1007/s40747-023-01261-7 |
| ids.doi | https://doi.org/10.1007/s40747-023-01261-7 |
| ids.openalex | https://openalex.org/W4387847981 |
| fwci | 3.69852326 |
| type | article |
| title | A-pruning: a lightweight pineapple flower counting network based on filter pruning |
| biblio.issue | 2 |
| biblio.volume | 10 |
| biblio.last_page | 2066 |
| biblio.first_page | 2047 |
| topics[0].id | https://openalex.org/T10616 |
| topics[0].field.id | https://openalex.org/fields/11 |
| topics[0].field.display_name | Agricultural and Biological Sciences |
| topics[0].score | 0.9994999766349792 |
| topics[0].domain.id | https://openalex.org/domains/1 |
| topics[0].domain.display_name | Life Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1110 |
| topics[0].subfield.display_name | Plant Science |
| topics[0].display_name | Smart Agriculture and AI |
| topics[1].id | https://openalex.org/T10036 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.973800003528595 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Advanced Neural Network Applications |
| topics[2].id | https://openalex.org/T12894 |
| topics[2].field.id | https://openalex.org/fields/11 |
| topics[2].field.display_name | Agricultural and Biological Sciences |
| topics[2].score | 0.9629999995231628 |
| topics[2].domain.id | https://openalex.org/domains/1 |
| topics[2].domain.display_name | Life Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1110 |
| topics[2].subfield.display_name | Plant Science |
| topics[2].display_name | Date Palm Research Studies |
| is_xpac | False |
| apc_list.value | 1320 |
| apc_list.currency | GBP |
| apc_list.value_usd | 1619 |
| apc_paid.value | 1320 |
| apc_paid.currency | GBP |
| apc_paid.value_usd | 1619 |
| concepts[0].id | https://openalex.org/C108010975 |
| concepts[0].level | 2 |
| concepts[0].score | 0.7227624654769897 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q500094 |
| concepts[0].display_name | Pruning |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6375712752342224 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C136886441 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6098144054412842 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q926129 |
| concepts[2].display_name | Normalization (sociology) |
| concepts[3].id | https://openalex.org/C2780186347 |
| concepts[3].level | 2 |
| concepts[3].score | 0.5921323299407959 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11414 |
| concepts[3].display_name | Subnetwork |
| concepts[4].id | https://openalex.org/C154945302 |
| concepts[4].level | 1 |
| concepts[4].score | 0.4978067874908447 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[4].display_name | Artificial intelligence |
| concepts[5].id | https://openalex.org/C106131492 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48223599791526794 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[5].display_name | Filter (signal processing) |
| concepts[6].id | https://openalex.org/C68339613 |
| concepts[6].level | 2 |
| concepts[6].score | 0.43685218691825867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1549489 |
| concepts[6].display_name | Speedup |
| concepts[7].id | https://openalex.org/C153180895 |
| concepts[7].level | 2 |
| concepts[7].score | 0.38337141275405884 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[7].display_name | Pattern recognition (psychology) |
| concepts[8].id | https://openalex.org/C11413529 |
| concepts[8].level | 1 |
| concepts[8].score | 0.3290852904319763 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q8366 |
| concepts[8].display_name | Algorithm |
| concepts[9].id | https://openalex.org/C173608175 |
| concepts[9].level | 1 |
| concepts[9].score | 0.2105652093887329 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[9].display_name | Parallel computing |
| concepts[10].id | https://openalex.org/C31972630 |
| concepts[10].level | 1 |
| concepts[10].score | 0.15366697311401367 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[10].display_name | Computer vision |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C144024400 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q21201 |
| concepts[12].display_name | Sociology |
| concepts[13].id | https://openalex.org/C19165224 |
| concepts[13].level | 1 |
| concepts[13].score | 0.0 |
| concepts[13].wikidata | https://www.wikidata.org/wiki/Q23404 |
| concepts[13].display_name | Anthropology |
| concepts[14].id | https://openalex.org/C6557445 |
| concepts[14].level | 1 |
| concepts[14].score | 0.0 |
| concepts[14].wikidata | https://www.wikidata.org/wiki/Q173113 |
| concepts[14].display_name | Agronomy |
| concepts[15].id | https://openalex.org/C38652104 |
| concepts[15].level | 1 |
| concepts[15].score | 0.0 |
| concepts[15].wikidata | https://www.wikidata.org/wiki/Q3510521 |
| concepts[15].display_name | Computer security |
| keywords[0].id | https://openalex.org/keywords/pruning |
| keywords[0].score | 0.7227624654769897 |
| keywords[0].display_name | Pruning |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6375712752342224 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/normalization |
| keywords[2].score | 0.6098144054412842 |
| keywords[2].display_name | Normalization (sociology) |
| keywords[3].id | https://openalex.org/keywords/subnetwork |
| keywords[3].score | 0.5921323299407959 |
| keywords[3].display_name | Subnetwork |
| keywords[4].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[4].score | 0.4978067874908447 |
| keywords[4].display_name | Artificial intelligence |
| keywords[5].id | https://openalex.org/keywords/filter |
| keywords[5].score | 0.48223599791526794 |
| keywords[5].display_name | Filter (signal processing) |
| keywords[6].id | https://openalex.org/keywords/speedup |
| keywords[6].score | 0.43685218691825867 |
| keywords[6].display_name | Speedup |
| keywords[7].id | https://openalex.org/keywords/pattern-recognition |
| keywords[7].score | 0.38337141275405884 |
| keywords[7].display_name | Pattern recognition (psychology) |
| keywords[8].id | https://openalex.org/keywords/algorithm |
| keywords[8].score | 0.3290852904319763 |
| keywords[8].display_name | Algorithm |
| keywords[9].id | https://openalex.org/keywords/parallel-computing |
| keywords[9].score | 0.2105652093887329 |
| keywords[9].display_name | Parallel computing |
| keywords[10].id | https://openalex.org/keywords/computer-vision |
| keywords[10].score | 0.15366697311401367 |
| keywords[10].display_name | Computer vision |
| language | en |
| locations[0].id | doi:10.1007/s40747-023-01261-7 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S3035462843 |
| locations[0].source.issn | 2198-6053, 2199-4536 |
| locations[0].source.type | journal |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | 2198-6053 |
| locations[0].source.is_core | True |
| locations[0].source.is_in_doaj | True |
| locations[0].source.display_name | Complex & Intelligent Systems |
| locations[0].source.host_organization | https://openalex.org/P4310319900 |
| locations[0].source.host_organization_name | Springer Science+Business Media |
| locations[0].source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| locations[0].source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdf |
| locations[0].version | publishedVersion |
| locations[0].raw_type | journal-article |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Complex & Intelligent Systems |
| locations[0].landing_page_url | https://doi.org/10.1007/s40747-023-01261-7 |
| locations[1].id | pmh:oai:doaj.org/article:863555176d9844a98b3e5737a51014a3 |
| locations[1].is_oa | False |
| locations[1].source.id | https://openalex.org/S4306401280 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | DOAJ (DOAJ: Directory of Open Access Journals) |
| locations[1].source.host_organization | |
| locations[1].source.host_organization_name | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | submittedVersion |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | Complex & Intelligent Systems, Vol 10, Iss 2, Pp 2047-2066 (2023) |
| locations[1].landing_page_url | https://doaj.org/article/863555176d9844a98b3e5737a51014a3 |
| indexed_in | crossref, doaj |
| authorships[0].author.id | https://openalex.org/A5051463234 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Guoyan Yu |
| authorships[0].countries | CN |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I79223203 |
| authorships[0].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[0].institutions[0].id | https://openalex.org/I79223203 |
| authorships[0].institutions[0].ror | https://ror.org/0462wa640 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I79223203 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Guangdong Ocean University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Guoyan Yu |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[1].author.id | https://openalex.org/A5063601023 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Ruilin Cai |
| authorships[1].countries | CN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I79223203 |
| authorships[1].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[1].institutions[0].id | https://openalex.org/I79223203 |
| authorships[1].institutions[0].ror | https://ror.org/0462wa640 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I79223203 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Guangdong Ocean University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Ruilin Cai |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[2].author.id | https://openalex.org/A5009652760 |
| authorships[2].author.orcid | |
| authorships[2].author.display_name | Yingtong Luo |
| authorships[2].countries | CN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I79223203 |
| authorships[2].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[2].institutions[0].id | https://openalex.org/I79223203 |
| authorships[2].institutions[0].ror | https://ror.org/0462wa640 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I79223203 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Guangdong Ocean University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yingtong Luo |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[3].author.id | https://openalex.org/A5064343455 |
| authorships[3].author.orcid | https://orcid.org/0000-0001-7751-4120 |
| authorships[3].author.display_name | Mingxin Hou |
| authorships[3].countries | CN |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I79223203 |
| authorships[3].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[3].institutions[0].id | https://openalex.org/I79223203 |
| authorships[3].institutions[0].ror | https://ror.org/0462wa640 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I79223203 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Guangdong Ocean University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Mingxin Hou |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[4].author.id | https://openalex.org/A5089732763 |
| authorships[4].author.orcid | |
| authorships[4].author.display_name | Ruoling Deng |
| authorships[4].countries | CN |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I79223203 |
| authorships[4].affiliations[0].raw_affiliation_string | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| authorships[4].institutions[0].id | https://openalex.org/I79223203 |
| authorships[4].institutions[0].ror | https://ror.org/0462wa640 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I79223203 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Guangdong Ocean University |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Ruoling Deng |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | School of Mechanical Engineering, Guangdong Ocean University, Zhanjiang, 524088, Guangdong Province, People's Republic of China |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdf |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A-pruning: a lightweight pineapple flower counting network based on filter pruning |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10616 |
| primary_topic.field.id | https://openalex.org/fields/11 |
| primary_topic.field.display_name | Agricultural and Biological Sciences |
| primary_topic.score | 0.9994999766349792 |
| primary_topic.domain.id | https://openalex.org/domains/1 |
| primary_topic.domain.display_name | Life Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1110 |
| primary_topic.subfield.display_name | Plant Science |
| primary_topic.display_name | Smart Agriculture and AI |
| related_works | https://openalex.org/W2060724872, https://openalex.org/W2082094785, https://openalex.org/W2202198356, https://openalex.org/W3087203342, https://openalex.org/W2377184161, https://openalex.org/W228984114, https://openalex.org/W2090026684, https://openalex.org/W4226360758, https://openalex.org/W2058965144, https://openalex.org/W4366555309 |
| cited_by_count | 14 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 11 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 3 |
| locations_count | 2 |
| best_oa_location.id | doi:10.1007/s40747-023-01261-7 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S3035462843 |
| best_oa_location.source.issn | 2198-6053, 2199-4536 |
| best_oa_location.source.type | journal |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | 2198-6053 |
| best_oa_location.source.is_core | True |
| best_oa_location.source.is_in_doaj | True |
| best_oa_location.source.display_name | Complex & Intelligent Systems |
| best_oa_location.source.host_organization | https://openalex.org/P4310319900 |
| best_oa_location.source.host_organization_name | Springer Science+Business Media |
| best_oa_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| best_oa_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdf |
| best_oa_location.version | publishedVersion |
| best_oa_location.raw_type | journal-article |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | True |
| best_oa_location.raw_source_name | Complex & Intelligent Systems |
| best_oa_location.landing_page_url | https://doi.org/10.1007/s40747-023-01261-7 |
| primary_location.id | doi:10.1007/s40747-023-01261-7 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S3035462843 |
| primary_location.source.issn | 2198-6053, 2199-4536 |
| primary_location.source.type | journal |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | 2198-6053 |
| primary_location.source.is_core | True |
| primary_location.source.is_in_doaj | True |
| primary_location.source.display_name | Complex & Intelligent Systems |
| primary_location.source.host_organization | https://openalex.org/P4310319900 |
| primary_location.source.host_organization_name | Springer Science+Business Media |
| primary_location.source.host_organization_lineage | https://openalex.org/P4310319900, https://openalex.org/P4310319965 |
| primary_location.source.host_organization_lineage_names | Springer Science+Business Media, Springer Nature |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://link.springer.com/content/pdf/10.1007/s40747-023-01261-7.pdf |
| primary_location.version | publishedVersion |
| primary_location.raw_type | journal-article |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Complex & Intelligent Systems |
| primary_location.landing_page_url | https://doi.org/10.1007/s40747-023-01261-7 |
| publication_date | 2023-10-21 |
| publication_year | 2023 |
| referenced_works | https://openalex.org/W3178185340, https://openalex.org/W4200335308, https://openalex.org/W3007054076, https://openalex.org/W2109255472, https://openalex.org/W3182541553, https://openalex.org/W3201102687, https://openalex.org/W4361222489, https://openalex.org/W3217381689, https://openalex.org/W2963420686, https://openalex.org/W4378448289, https://openalex.org/W3093647646, https://openalex.org/W4361030063, https://openalex.org/W2987322772, https://openalex.org/W3012947883, https://openalex.org/W3206704828, https://openalex.org/W4200389570, https://openalex.org/W2968911939, https://openalex.org/W4206638364, https://openalex.org/W4283008625, https://openalex.org/W2603203130, https://openalex.org/W4318823466, https://openalex.org/W4323050444, https://openalex.org/W3207149415, https://openalex.org/W2999847126, https://openalex.org/W3199427309, https://openalex.org/W4210741732, https://openalex.org/W3202964170, https://openalex.org/W4383215766, https://openalex.org/W4324351618, https://openalex.org/W3034552520, https://openalex.org/W4319866011, https://openalex.org/W2963037989, https://openalex.org/W2570343428, https://openalex.org/W4386076325, https://openalex.org/W2963351448, https://openalex.org/W2991626090, https://openalex.org/W2147990838, https://openalex.org/W2164084182, https://openalex.org/W6775845032, https://openalex.org/W2101544546, https://openalex.org/W4285357233, https://openalex.org/W2347064614, https://openalex.org/W3004672782, https://openalex.org/W3125983862, https://openalex.org/W3214899844, https://openalex.org/W2946948417 |
| referenced_works_count | 46 |
| abstract_inverted_index.M | 139 |
| abstract_inverted_index.a | 58, 118, 136, 141, 164 |
| abstract_inverted_index.24 | 250 |
| abstract_inverted_index.An | 69 |
| abstract_inverted_index.NX | 239 |
| abstract_inverted_index.We | 231 |
| abstract_inverted_index.an | 105, 131, 148, 245 |
| abstract_inverted_index.as | 266 |
| abstract_inverted_index.be | 47, 99, 219, 259 |
| abstract_inverted_index.by | 41, 181 |
| abstract_inverted_index.in | 12, 27, 49, 61, 168, 213 |
| abstract_inverted_index.is | 76, 110, 192 |
| abstract_inverted_index.it | 243 |
| abstract_inverted_index.of | 9, 86, 133, 144, 152, 173, 190, 196, 249, 278 |
| abstract_inverted_index.on | 52, 228, 234, 262, 280 |
| abstract_inverted_index.to | 78, 82, 116, 158 |
| abstract_inverted_index.1.7 | 138 |
| abstract_inverted_index.178 | 153 |
| abstract_inverted_index.3.8 | 145 |
| abstract_inverted_index.MB, | 146 |
| abstract_inverted_index.Our | 122 |
| abstract_inverted_index.The | 254 |
| abstract_inverted_index.and | 5, 15, 45, 147, 175, 183, 210, 226, 276 |
| abstract_inverted_index.are | 19, 24, 39, 179 |
| abstract_inverted_index.can | 98, 218, 258 |
| abstract_inverted_index.for | 112, 223, 273 |
| abstract_inverted_index.low | 42 |
| abstract_inverted_index.new | 119 |
| abstract_inverted_index.per | 155, 252 |
| abstract_inverted_index.ten | 201 |
| abstract_inverted_index.the | 7, 17, 66, 79, 84, 87, 92, 95, 113, 126, 159, 171, 176, 187, 197, 200, 206, 235, 274 |
| abstract_inverted_index.0.9% | 165 |
| abstract_inverted_index.Deep | 21 |
| abstract_inverted_index.This | 55 |
| abstract_inverted_index.With | 89 |
| abstract_inverted_index.best | 96 |
| abstract_inverted_index.deep | 36 |
| abstract_inverted_index.mere | 137 |
| abstract_inverted_index.more | 25 |
| abstract_inverted_index.real | 13, 50 |
| abstract_inverted_index.size | 143, 178 |
| abstract_inverted_index.such | 265 |
| abstract_inverted_index.than | 30 |
| abstract_inverted_index.that | 125, 195 |
| abstract_inverted_index.this | 90, 233 |
| abstract_inverted_index.time | 14, 51 |
| abstract_inverted_index.used | 261 |
| abstract_inverted_index.with | 94, 135, 221 |
| abstract_inverted_index.71.7% | 134 |
| abstract_inverted_index.75.8% | 182 |
| abstract_inverted_index.Among | 199 |
| abstract_inverted_index.Then, | 104 |
| abstract_inverted_index.added | 111 |
| abstract_inverted_index.after | 102 |
| abstract_inverted_index.batch | 71 |
| abstract_inverted_index.crops | 279 |
| abstract_inverted_index.found | 100 |
| abstract_inverted_index.layer | 73 |
| abstract_inverted_index.model | 60, 142, 177 |
| abstract_inverted_index.paper | 56 |
| abstract_inverted_index.ranks | 211 |
| abstract_inverted_index.shows | 163 |
| abstract_inverted_index.speed | 151, 189, 209, 248 |
| abstract_inverted_index.twice | 194 |
| abstract_inverted_index.where | 242 |
| abstract_inverted_index.which | 62 |
| abstract_inverted_index.yield | 18 |
| abstract_inverted_index.73.8%, | 184 |
| abstract_inverted_index.During | 1 |
| abstract_inverted_index.Jetson | 237 |
| abstract_inverted_index.NVIDIA | 236 |
| abstract_inverted_index.Xavier | 238 |
| abstract_inverted_index.YOLOv5 | 67 |
| abstract_inverted_index.aerial | 268 |
| abstract_inverted_index.board, | 241 |
| abstract_inverted_index.boasts | 205 |
| abstract_inverted_index.cannot | 46 |
| abstract_inverted_index.filter | 63 |
| abstract_inverted_index.frames | 154, 251 |
| abstract_inverted_index.manual | 32 |
| abstract_inverted_index.mobile | 53, 229, 281 |
| abstract_inverted_index.models | 38 |
| abstract_inverted_index.nearly | 193 |
| abstract_inverted_index.number | 8, 172 |
| abstract_inverted_index.pruned | 114 |
| abstract_inverted_index.second | 212 |
| abstract_inverted_index.speeds | 44 |
| abstract_inverted_index.while, | 170 |
| abstract_inverted_index.YOLOv5, | 161 |
| abstract_inverted_index.applied | 48 |
| abstract_inverted_index.attains | 130 |
| abstract_inverted_index.average | 246 |
| abstract_inverted_index.channel | 107 |
| abstract_inverted_index.fastest | 207 |
| abstract_inverted_index.flowers | 11 |
| abstract_inverted_index.methods | 23 |
| abstract_inverted_index.network | 93, 115, 129, 257 |
| abstract_inverted_index.process | 81 |
| abstract_inverted_index.pruning | 64, 80 |
| abstract_inverted_index.quickly | 101 |
| abstract_inverted_index.reduced | 180 |
| abstract_inverted_index.running | 150, 188 |
| abstract_inverted_index.second. | 156, 253 |
| abstract_inverted_index.support | 272 |
| abstract_inverted_index.Abstract | 0 |
| abstract_inverted_index.Compared | 157 |
| abstract_inverted_index.However, | 34 |
| abstract_inverted_index.YOLOv5_E | 120, 128, 162, 191, 204, 217, 256 |
| abstract_inverted_index.accuracy | 132 |
| abstract_inverted_index.achieved | 244 |
| abstract_inverted_index.adaptive | 70 |
| abstract_inverted_index.counting | 6, 227, 277 |
| abstract_inverted_index.decrease | 167 |
| abstract_inverted_index.devices. | 54, 230, 282 |
| abstract_inverted_index.evaluate | 83 |
| abstract_inverted_index.existing | 35 |
| abstract_inverted_index.findings | 123 |
| abstract_inverted_index.learning | 22, 37 |
| abstract_inverted_index.marginal | 166 |
| abstract_inverted_index.network. | 68, 121 |
| abstract_inverted_index.networks | 202 |
| abstract_inverted_index.original | 160 |
| abstract_inverted_index.presents | 57 |
| abstract_inverted_index.proposed | 127, 255 |
| abstract_inverted_index.pruning. | 103 |
| abstract_inverted_index.unmanned | 267 |
| abstract_inverted_index.Moreover, | 186 |
| abstract_inverted_index.accuracy. | 215 |
| abstract_inverted_index.accuracy; | 169 |
| abstract_inverted_index.approach, | 91 |
| abstract_inverted_index.attention | 108 |
| abstract_inverted_index.detecting | 4 |
| abstract_inverted_index.detection | 43, 208, 214, 225, 247, 275 |
| abstract_inverted_index.efficient | 26, 106 |
| abstract_inverted_index.equipment | 264 |
| abstract_inverted_index.mechanism | 75, 109 |
| abstract_inverted_index.original. | 198 |
| abstract_inverted_index.pineapple | 2, 10 |
| abstract_inverted_index.providing | 270 |
| abstract_inverted_index.real-time | 28, 224 |
| abstract_inverted_index.technical | 271 |
| abstract_inverted_index.validated | 232 |
| abstract_inverted_index.vehicles, | 269 |
| abstract_inverted_index.StrongSORT | 222 |
| abstract_inverted_index.compresses | 65 |
| abstract_inverted_index.constitute | 117 |
| abstract_inverted_index.detection. | 33 |
| abstract_inverted_index.essential. | 20 |
| abstract_inverted_index.estimating | 16 |
| abstract_inverted_index.evaluated, | 203 |
| abstract_inverted_index.evaluation | 74 |
| abstract_inverted_index.impressive | 149 |
| abstract_inverted_index.integrated | 220 |
| abstract_inverted_index.introduced | 77 |
| abstract_inverted_index.parameters | 174 |
| abstract_inverted_index.demonstrate | 124 |
| abstract_inverted_index.development | 240 |
| abstract_inverted_index.effectively | 260 |
| abstract_inverted_index.lightweight | 59 |
| abstract_inverted_index.parameters, | 140 |
| abstract_inverted_index.performance | 29, 85, 97 |
| abstract_inverted_index.subnetwork. | 88 |
| abstract_inverted_index.traditional | 31 |
| abstract_inverted_index.Furthermore, | 216 |
| abstract_inverted_index.agricultural | 263 |
| abstract_inverted_index.cultivation, | 3 |
| abstract_inverted_index.characterized | 40 |
| abstract_inverted_index.normalization | 72 |
| abstract_inverted_index.respectively. | 185 |
| cited_by_percentile_year.max | 99 |
| cited_by_percentile_year.min | 96 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| sustainable_development_goals[0].id | https://metadata.un.org/sdg/2 |
| sustainable_development_goals[0].score | 0.6499999761581421 |
| sustainable_development_goals[0].display_name | Zero hunger |
| citation_normalized_percentile.value | 0.96027315 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | True |