A pso approach for solving vrptw with real case study Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.57702/yp1p8kla
During the past few years, there have been tremendous efforts on improving the cost of logistics using varieties of models for vehicle routing problems. In fact, the recent rise on fuel prices has motivated many to reduce the cost of transportation associated with their business through an improved implementation of VRP systems. In this paper, we study the VRP with time windows. We propose a particle swarm optimization algorithm to solve the given VRPTW. A computational experiment is carried out by running the proposed PSO with the VRPTW benchmark data set of Solomon. The associated results show that this algorithm is able to provide good solutions that are very close to its optimal solutions for problems with 25 customers within reasonably computational time. Furthermore, our proposed PSO is used for a real-world case study of a Chlorine Capsule distribution company to the water reservoir in Tehran. The related results indicate that the algorithm can reduce the cost and time significantly.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.57702/yp1p8kla
- OA Status
- green
- Cited By
- 21
- References
- 15
- Related Works
- 20
- OpenAlex ID
- https://openalex.org/W2184190463
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W2184190463Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.57702/yp1p8klaDigital Object Identifier
- Title
-
A pso approach for solving vrptw with real case studyWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Shahrzad Amini, Hassan Javanshir, Reza Tavakkoli‐MoghaddamList of authors in order
- Landing page
-
https://doi.org/10.57702/yp1p8klaPublisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://doi.org/10.57702/yp1p8klaDirect OA link when available
- Concepts
-
Vehicle routing problem, Benchmark (surveying), Particle swarm optimization, Mathematical optimization, Set (abstract data type), Computer science, Routing (electronic design automation), Mathematics, Geography, Computer network, Geodesy, Programming languageTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
21Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1, 2024: 1, 2023: 1, 2022: 1, 2021: 1Per-year citation counts (last 5 years)
- References (count)
-
15Number of works referenced by this work
- Related works (count)
-
20Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W2184190463 |
|---|---|
| doi | https://doi.org/10.57702/yp1p8kla |
| ids.doi | https://doi.org/10.57702/yp1p8kla |
| ids.mag | 2184190463 |
| ids.openalex | https://openalex.org/W2184190463 |
| fwci | |
| type | article |
| title | A pso approach for solving vrptw with real case study |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10567 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9998999834060669 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Vehicle Routing Optimization Methods |
| topics[1].id | https://openalex.org/T12306 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.986299991607666 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2215 |
| topics[1].subfield.display_name | Building and Construction |
| topics[1].display_name | Urban and Freight Transport Logistics |
| topics[2].id | https://openalex.org/T10100 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.984499990940094 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Metaheuristic Optimization Algorithms Research |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C123784306 |
| concepts[0].level | 3 |
| concepts[0].score | 0.9221539497375488 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q944041 |
| concepts[0].display_name | Vehicle routing problem |
| concepts[1].id | https://openalex.org/C185798385 |
| concepts[1].level | 2 |
| concepts[1].score | 0.7311639189720154 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q1161707 |
| concepts[1].display_name | Benchmark (surveying) |
| concepts[2].id | https://openalex.org/C85617194 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6995786428451538 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2072794 |
| concepts[2].display_name | Particle swarm optimization |
| concepts[3].id | https://openalex.org/C126255220 |
| concepts[3].level | 1 |
| concepts[3].score | 0.651326060295105 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q141495 |
| concepts[3].display_name | Mathematical optimization |
| concepts[4].id | https://openalex.org/C177264268 |
| concepts[4].level | 2 |
| concepts[4].score | 0.602210521697998 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q1514741 |
| concepts[4].display_name | Set (abstract data type) |
| concepts[5].id | https://openalex.org/C41008148 |
| concepts[5].level | 0 |
| concepts[5].score | 0.5373955965042114 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[5].display_name | Computer science |
| concepts[6].id | https://openalex.org/C74172769 |
| concepts[6].level | 2 |
| concepts[6].score | 0.2865526080131531 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q1446839 |
| concepts[6].display_name | Routing (electronic design automation) |
| concepts[7].id | https://openalex.org/C33923547 |
| concepts[7].level | 0 |
| concepts[7].score | 0.23077312111854553 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[7].display_name | Mathematics |
| concepts[8].id | https://openalex.org/C205649164 |
| concepts[8].level | 0 |
| concepts[8].score | 0.06505241990089417 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q1071 |
| concepts[8].display_name | Geography |
| concepts[9].id | https://openalex.org/C31258907 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q1301371 |
| concepts[9].display_name | Computer network |
| concepts[10].id | https://openalex.org/C13280743 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q131089 |
| concepts[10].display_name | Geodesy |
| concepts[11].id | https://openalex.org/C199360897 |
| concepts[11].level | 1 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q9143 |
| concepts[11].display_name | Programming language |
| keywords[0].id | https://openalex.org/keywords/vehicle-routing-problem |
| keywords[0].score | 0.9221539497375488 |
| keywords[0].display_name | Vehicle routing problem |
| keywords[1].id | https://openalex.org/keywords/benchmark |
| keywords[1].score | 0.7311639189720154 |
| keywords[1].display_name | Benchmark (surveying) |
| keywords[2].id | https://openalex.org/keywords/particle-swarm-optimization |
| keywords[2].score | 0.6995786428451538 |
| keywords[2].display_name | Particle swarm optimization |
| keywords[3].id | https://openalex.org/keywords/mathematical-optimization |
| keywords[3].score | 0.651326060295105 |
| keywords[3].display_name | Mathematical optimization |
| keywords[4].id | https://openalex.org/keywords/set |
| keywords[4].score | 0.602210521697998 |
| keywords[4].display_name | Set (abstract data type) |
| keywords[5].id | https://openalex.org/keywords/computer-science |
| keywords[5].score | 0.5373955965042114 |
| keywords[5].display_name | Computer science |
| keywords[6].id | https://openalex.org/keywords/routing |
| keywords[6].score | 0.2865526080131531 |
| keywords[6].display_name | Routing (electronic design automation) |
| keywords[7].id | https://openalex.org/keywords/mathematics |
| keywords[7].score | 0.23077312111854553 |
| keywords[7].display_name | Mathematics |
| keywords[8].id | https://openalex.org/keywords/geography |
| keywords[8].score | 0.06505241990089417 |
| keywords[8].display_name | Geography |
| language | en |
| locations[0].id | doi:10.57702/yp1p8kla |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S7407053387 |
| locations[0].source.type | repository |
| locations[0].source.is_oa | False |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | TIB Data Manager |
| locations[0].source.host_organization | |
| locations[0].source.host_organization_name | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | |
| locations[0].raw_type | dataset |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.57702/yp1p8kla |
| locations[1].id | mag:2184190463 |
| locations[1].is_oa | False |
| locations[1].source | |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://www.arpapress.com/Volumes/SiAug2010/Si_NonLinearSciences_14.pdf |
| indexed_in | datacite |
| authorships[0].author.id | https://openalex.org/A5044759098 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shahrzad Amini |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Shahrzad Amini |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5074496132 |
| authorships[1].author.orcid | https://orcid.org/0000-0001-6884-3352 |
| authorships[1].author.display_name | Hassan Javanshir |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Hassan Javanshir |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5032511721 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6757-926X |
| authorships[2].author.display_name | Reza Tavakkoli‐Moghaddam |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Reza Tavakkoli-Moghaddam |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://doi.org/10.57702/yp1p8kla |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A pso approach for solving vrptw with real case study |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10567 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9998999834060669 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Vehicle Routing Optimization Methods |
| related_works | https://openalex.org/W2555866877, https://openalex.org/W2096305430, https://openalex.org/W1975501199, https://openalex.org/W94181061, https://openalex.org/W2111563176, https://openalex.org/W1973565128, https://openalex.org/W162273153, https://openalex.org/W2101363262, https://openalex.org/W3162858982, https://openalex.org/W2770638039, https://openalex.org/W1588425201, https://openalex.org/W2058342212, https://openalex.org/W2902834169, https://openalex.org/W1970401431, https://openalex.org/W2792143777, https://openalex.org/W2162508334, https://openalex.org/W2150564457, https://openalex.org/W1999161039, https://openalex.org/W159794904, https://openalex.org/W1588856286 |
| cited_by_count | 21 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| counts_by_year[1].year | 2024 |
| counts_by_year[1].cited_by_count | 1 |
| counts_by_year[2].year | 2023 |
| counts_by_year[2].cited_by_count | 1 |
| counts_by_year[3].year | 2022 |
| counts_by_year[3].cited_by_count | 1 |
| counts_by_year[4].year | 2021 |
| counts_by_year[4].cited_by_count | 1 |
| counts_by_year[5].year | 2019 |
| counts_by_year[5].cited_by_count | 4 |
| counts_by_year[6].year | 2018 |
| counts_by_year[6].cited_by_count | 2 |
| counts_by_year[7].year | 2017 |
| counts_by_year[7].cited_by_count | 1 |
| counts_by_year[8].year | 2016 |
| counts_by_year[8].cited_by_count | 3 |
| counts_by_year[9].year | 2015 |
| counts_by_year[9].cited_by_count | 2 |
| counts_by_year[10].year | 2014 |
| counts_by_year[10].cited_by_count | 1 |
| counts_by_year[11].year | 2013 |
| counts_by_year[11].cited_by_count | 1 |
| counts_by_year[12].year | 2012 |
| counts_by_year[12].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | doi:10.57702/yp1p8kla |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S7407053387 |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | TIB Data Manager |
| best_oa_location.source.host_organization | |
| best_oa_location.source.host_organization_name | |
| best_oa_location.license | |
| best_oa_location.pdf_url | |
| best_oa_location.version | |
| best_oa_location.raw_type | dataset |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.57702/yp1p8kla |
| primary_location.id | doi:10.57702/yp1p8kla |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S7407053387 |
| primary_location.source.type | repository |
| primary_location.source.is_oa | False |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | TIB Data Manager |
| primary_location.source.host_organization | |
| primary_location.source.host_organization_name | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | |
| primary_location.raw_type | dataset |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.57702/yp1p8kla |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works | https://openalex.org/W2096305430, https://openalex.org/W2007401074, https://openalex.org/W2056755342, https://openalex.org/W2618966117, https://openalex.org/W315572163, https://openalex.org/W2111563176, https://openalex.org/W2080427200, https://openalex.org/W2111581650, https://openalex.org/W2108753073, https://openalex.org/W2069721696, https://openalex.org/W2163258608, https://openalex.org/W2402846924, https://openalex.org/W2124613591, https://openalex.org/W2543580944, https://openalex.org/W2040678783 |
| referenced_works_count | 15 |
| abstract_inverted_index.A | 74 |
| abstract_inverted_index.a | 64, 130, 135 |
| abstract_inverted_index.25 | 117 |
| abstract_inverted_index.In | 24, 52 |
| abstract_inverted_index.We | 62 |
| abstract_inverted_index.an | 46 |
| abstract_inverted_index.by | 80 |
| abstract_inverted_index.in | 144 |
| abstract_inverted_index.is | 77, 100, 127 |
| abstract_inverted_index.of | 14, 18, 39, 49, 91, 134 |
| abstract_inverted_index.on | 10, 29 |
| abstract_inverted_index.to | 35, 69, 102, 110, 140 |
| abstract_inverted_index.we | 55 |
| abstract_inverted_index.PSO | 84, 126 |
| abstract_inverted_index.The | 93, 146 |
| abstract_inverted_index.VRP | 50, 58 |
| abstract_inverted_index.and | 157 |
| abstract_inverted_index.are | 107 |
| abstract_inverted_index.can | 153 |
| abstract_inverted_index.few | 3 |
| abstract_inverted_index.for | 20, 114, 129 |
| abstract_inverted_index.has | 32 |
| abstract_inverted_index.its | 111 |
| abstract_inverted_index.our | 124 |
| abstract_inverted_index.out | 79 |
| abstract_inverted_index.set | 90 |
| abstract_inverted_index.the | 1, 12, 26, 37, 57, 71, 82, 86, 141, 151, 155 |
| abstract_inverted_index.able | 101 |
| abstract_inverted_index.been | 7 |
| abstract_inverted_index.case | 132 |
| abstract_inverted_index.cost | 13, 38, 156 |
| abstract_inverted_index.data | 89 |
| abstract_inverted_index.fuel | 30 |
| abstract_inverted_index.good | 104 |
| abstract_inverted_index.have | 6 |
| abstract_inverted_index.many | 34 |
| abstract_inverted_index.past | 2 |
| abstract_inverted_index.rise | 28 |
| abstract_inverted_index.show | 96 |
| abstract_inverted_index.that | 97, 106, 150 |
| abstract_inverted_index.this | 53, 98 |
| abstract_inverted_index.time | 60, 158 |
| abstract_inverted_index.used | 128 |
| abstract_inverted_index.very | 108 |
| abstract_inverted_index.with | 42, 59, 85, 116 |
| abstract_inverted_index.VRPTW | 87 |
| abstract_inverted_index.close | 109 |
| abstract_inverted_index.fact, | 25 |
| abstract_inverted_index.given | 72 |
| abstract_inverted_index.solve | 70 |
| abstract_inverted_index.study | 56, 133 |
| abstract_inverted_index.swarm | 66 |
| abstract_inverted_index.their | 43 |
| abstract_inverted_index.there | 5 |
| abstract_inverted_index.time. | 122 |
| abstract_inverted_index.using | 16 |
| abstract_inverted_index.water | 142 |
| abstract_inverted_index.During | 0 |
| abstract_inverted_index.VRPTW. | 73 |
| abstract_inverted_index.models | 19 |
| abstract_inverted_index.paper, | 54 |
| abstract_inverted_index.prices | 31 |
| abstract_inverted_index.recent | 27 |
| abstract_inverted_index.reduce | 36, 154 |
| abstract_inverted_index.within | 119 |
| abstract_inverted_index.years, | 4 |
| abstract_inverted_index.Capsule | 137 |
| abstract_inverted_index.Tehran. | 145 |
| abstract_inverted_index.carried | 78 |
| abstract_inverted_index.company | 139 |
| abstract_inverted_index.efforts | 9 |
| abstract_inverted_index.optimal | 112 |
| abstract_inverted_index.propose | 63 |
| abstract_inverted_index.provide | 103 |
| abstract_inverted_index.related | 147 |
| abstract_inverted_index.results | 95, 148 |
| abstract_inverted_index.routing | 22 |
| abstract_inverted_index.running | 81 |
| abstract_inverted_index.through | 45 |
| abstract_inverted_index.vehicle | 21 |
| abstract_inverted_index.Chlorine | 136 |
| abstract_inverted_index.Solomon. | 92 |
| abstract_inverted_index.business | 44 |
| abstract_inverted_index.improved | 47 |
| abstract_inverted_index.indicate | 149 |
| abstract_inverted_index.particle | 65 |
| abstract_inverted_index.problems | 115 |
| abstract_inverted_index.proposed | 83, 125 |
| abstract_inverted_index.systems. | 51 |
| abstract_inverted_index.windows. | 61 |
| abstract_inverted_index.algorithm | 68, 99, 152 |
| abstract_inverted_index.benchmark | 88 |
| abstract_inverted_index.customers | 118 |
| abstract_inverted_index.improving | 11 |
| abstract_inverted_index.logistics | 15 |
| abstract_inverted_index.motivated | 33 |
| abstract_inverted_index.problems. | 23 |
| abstract_inverted_index.reservoir | 143 |
| abstract_inverted_index.solutions | 105, 113 |
| abstract_inverted_index.varieties | 17 |
| abstract_inverted_index.associated | 41, 94 |
| abstract_inverted_index.experiment | 76 |
| abstract_inverted_index.real-world | 131 |
| abstract_inverted_index.reasonably | 120 |
| abstract_inverted_index.tremendous | 8 |
| abstract_inverted_index.Furthermore, | 123 |
| abstract_inverted_index.distribution | 138 |
| abstract_inverted_index.optimization | 67 |
| abstract_inverted_index.computational | 75, 121 |
| abstract_inverted_index.implementation | 48 |
| abstract_inverted_index.significantly. | 159 |
| abstract_inverted_index.transportation | 40 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |