A PTAS for the horizontal rectangle stabbing problem Article Swipe
YOU?
·
· 2021
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2111.05197
We study rectangle stabbing problems in which we are given $n$ axis-aligned rectangles in the plane that we want to stab, i.e., we want to select line segments such that for each given rectangle there is a line segment that intersects two opposite edges of it. In the horizontal rectangle stabbing problem (STABBING), the goal is to find a set of horizontal line segments of minimum total length such that all rectangles are stabbed. In general rectangle stabbing problem, also known as horizontal-vertical stabbing problem (HV-Stabbing), the goal is to find a set of rectilinear (i.e., either vertical or horizontal) line segments of minimum total length such that all rectangles are stabbed. Both variants are NP-hard. Chan, van Dijk, Fleszar, Spoerhase, and Wolff [2018]initiated the study of these problems by providing constant approximation algorithms. Recently, Eisenbrand, Gallato, Svensson, and Venzin [2021] have presented a QPTAS and a polynomial-time 8-approximation algorithm for STABBING but it is was open whether the problem admits a PTAS. In this paper, we obtain a PTAS for STABBING, settling this question. For HV-Stabbing, we obtain a $(2+\varepsilon)$-approximation. We also obtain PTASes for special cases of HV-Stabbing: (i) when all rectangles are squares, (ii) when each rectangle's width is at most its height, and (iii) when all rectangles are $δ$-large, i.e., have at least one edge whose length is at least $δ$, while all edge lengths are at most 1. Our result also implies improved approximations for other problems such as generalized minimum Manhattan network.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2111.05197
- https://arxiv.org/pdf/2111.05197
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4226298009
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4226298009Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2111.05197Digital Object Identifier
- Title
-
A PTAS for the horizontal rectangle stabbing problemWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2021Year of publication
- Publication date
-
2021-11-09Full publication date if available
- Authors
-
Arindam Khan, Aditya Subramanian, Andreas WieseList of authors in order
- Landing page
-
https://arxiv.org/abs/2111.05197Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2111.05197Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2111.05197Direct OA link when available
- Concepts
-
Rectangle, Combinatorics, Line (geometry), Mathematics, Line segment, Approximation algorithm, Plane (geometry), GeometryTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4226298009 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2111.05197 |
| ids.doi | https://doi.org/10.48550/arxiv.2111.05197 |
| ids.openalex | https://openalex.org/W4226298009 |
| fwci | |
| type | preprint |
| title | A PTAS for the horizontal rectangle stabbing problem |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T12420 |
| topics[0].field.id | https://openalex.org/fields/25 |
| topics[0].field.display_name | Materials Science |
| topics[0].score | 0.869700014591217 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2505 |
| topics[0].subfield.display_name | Materials Chemistry |
| topics[0].display_name | Silicone and Siloxane Chemistry |
| topics[1].id | https://openalex.org/T11870 |
| topics[1].field.id | https://openalex.org/fields/22 |
| topics[1].field.display_name | Engineering |
| topics[1].score | 0.8345000147819519 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2205 |
| topics[1].subfield.display_name | Civil and Structural Engineering |
| topics[1].display_name | Structural Analysis and Optimization |
| topics[2].id | https://openalex.org/T10996 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.8108000159263611 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1704 |
| topics[2].subfield.display_name | Computer Graphics and Computer-Aided Design |
| topics[2].display_name | Computational Geometry and Mesh Generation |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2781302577 |
| concepts[0].level | 2 |
| concepts[0].score | 0.9612685441970825 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q209 |
| concepts[0].display_name | Rectangle |
| concepts[1].id | https://openalex.org/C114614502 |
| concepts[1].level | 1 |
| concepts[1].score | 0.7145662307739258 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q76592 |
| concepts[1].display_name | Combinatorics |
| concepts[2].id | https://openalex.org/C198352243 |
| concepts[2].level | 2 |
| concepts[2].score | 0.5408786535263062 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q37105 |
| concepts[2].display_name | Line (geometry) |
| concepts[3].id | https://openalex.org/C33923547 |
| concepts[3].level | 0 |
| concepts[3].score | 0.5208969116210938 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q395 |
| concepts[3].display_name | Mathematics |
| concepts[4].id | https://openalex.org/C182124507 |
| concepts[4].level | 2 |
| concepts[4].score | 0.48994916677474976 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q166154 |
| concepts[4].display_name | Line segment |
| concepts[5].id | https://openalex.org/C148764684 |
| concepts[5].level | 2 |
| concepts[5].score | 0.48820072412490845 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q621751 |
| concepts[5].display_name | Approximation algorithm |
| concepts[6].id | https://openalex.org/C17825722 |
| concepts[6].level | 2 |
| concepts[6].score | 0.44905921816825867 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q17285 |
| concepts[6].display_name | Plane (geometry) |
| concepts[7].id | https://openalex.org/C2524010 |
| concepts[7].level | 1 |
| concepts[7].score | 0.4008306860923767 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q8087 |
| concepts[7].display_name | Geometry |
| keywords[0].id | https://openalex.org/keywords/rectangle |
| keywords[0].score | 0.9612685441970825 |
| keywords[0].display_name | Rectangle |
| keywords[1].id | https://openalex.org/keywords/combinatorics |
| keywords[1].score | 0.7145662307739258 |
| keywords[1].display_name | Combinatorics |
| keywords[2].id | https://openalex.org/keywords/line |
| keywords[2].score | 0.5408786535263062 |
| keywords[2].display_name | Line (geometry) |
| keywords[3].id | https://openalex.org/keywords/mathematics |
| keywords[3].score | 0.5208969116210938 |
| keywords[3].display_name | Mathematics |
| keywords[4].id | https://openalex.org/keywords/line-segment |
| keywords[4].score | 0.48994916677474976 |
| keywords[4].display_name | Line segment |
| keywords[5].id | https://openalex.org/keywords/approximation-algorithm |
| keywords[5].score | 0.48820072412490845 |
| keywords[5].display_name | Approximation algorithm |
| keywords[6].id | https://openalex.org/keywords/plane |
| keywords[6].score | 0.44905921816825867 |
| keywords[6].display_name | Plane (geometry) |
| keywords[7].id | https://openalex.org/keywords/geometry |
| keywords[7].score | 0.4008306860923767 |
| keywords[7].display_name | Geometry |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2111.05197 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2111.05197 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2111.05197 |
| locations[1].id | doi:10.48550/arxiv.2111.05197 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2111.05197 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5085907661 |
| authorships[0].author.orcid | https://orcid.org/0000-0001-7505-1687 |
| authorships[0].author.display_name | Arindam Khan |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Khan, Arindam |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5056872430 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-1398-1923 |
| authorships[1].author.display_name | Aditya Subramanian |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Subramanian, Aditya |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5067503013 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-3705-016X |
| authorships[2].author.display_name | Andreas Wiese |
| authorships[2].author_position | last |
| authorships[2].raw_author_name | Wiese, Andreas |
| authorships[2].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2111.05197 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A PTAS for the horizontal rectangle stabbing problem |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T12420 |
| primary_topic.field.id | https://openalex.org/fields/25 |
| primary_topic.field.display_name | Materials Science |
| primary_topic.score | 0.869700014591217 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2505 |
| primary_topic.subfield.display_name | Materials Chemistry |
| primary_topic.display_name | Silicone and Siloxane Chemistry |
| related_works | https://openalex.org/W2097569240, https://openalex.org/W4386442742, https://openalex.org/W2323975601, https://openalex.org/W2353000084, https://openalex.org/W2468848027, https://openalex.org/W4205730002, https://openalex.org/W2942906518, https://openalex.org/W1623138178, https://openalex.org/W2382326160, https://openalex.org/W2357946356 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2111.05197 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2111.05197 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2111.05197 |
| primary_location.id | pmh:oai:arXiv.org:2111.05197 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2111.05197 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2111.05197 |
| publication_date | 2021-11-09 |
| publication_year | 2021 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 36, 58, 91, 143, 146, 161, 168, 179 |
| abstract_inverted_index.1. | 232 |
| abstract_inverted_index.In | 46, 74, 163 |
| abstract_inverted_index.We | 0, 181 |
| abstract_inverted_index.as | 81, 243 |
| abstract_inverted_index.at | 202, 215, 222, 230 |
| abstract_inverted_index.by | 129 |
| abstract_inverted_index.in | 5, 13 |
| abstract_inverted_index.is | 35, 55, 88, 154, 201, 221 |
| abstract_inverted_index.it | 153 |
| abstract_inverted_index.of | 44, 60, 64, 93, 102, 126, 188 |
| abstract_inverted_index.or | 98 |
| abstract_inverted_index.to | 19, 24, 56, 89 |
| abstract_inverted_index.we | 7, 17, 22, 166, 177 |
| abstract_inverted_index.$n$ | 10 |
| abstract_inverted_index.(i) | 190 |
| abstract_inverted_index.For | 175 |
| abstract_inverted_index.Our | 233 |
| abstract_inverted_index.all | 70, 108, 192, 209, 226 |
| abstract_inverted_index.and | 121, 138, 145, 206 |
| abstract_inverted_index.are | 8, 72, 110, 114, 194, 211, 229 |
| abstract_inverted_index.but | 152 |
| abstract_inverted_index.for | 30, 150, 170, 185, 239 |
| abstract_inverted_index.it. | 45 |
| abstract_inverted_index.its | 204 |
| abstract_inverted_index.one | 217 |
| abstract_inverted_index.set | 59, 92 |
| abstract_inverted_index.the | 14, 47, 53, 86, 124, 158 |
| abstract_inverted_index.two | 41 |
| abstract_inverted_index.van | 117 |
| abstract_inverted_index.was | 155 |
| abstract_inverted_index.(ii) | 196 |
| abstract_inverted_index.Both | 112 |
| abstract_inverted_index.PTAS | 169 |
| abstract_inverted_index.also | 79, 182, 235 |
| abstract_inverted_index.each | 31, 198 |
| abstract_inverted_index.edge | 218, 227 |
| abstract_inverted_index.find | 57, 90 |
| abstract_inverted_index.goal | 54, 87 |
| abstract_inverted_index.have | 141, 214 |
| abstract_inverted_index.line | 26, 37, 62, 100 |
| abstract_inverted_index.most | 203, 231 |
| abstract_inverted_index.open | 156 |
| abstract_inverted_index.such | 28, 68, 106, 242 |
| abstract_inverted_index.that | 16, 29, 39, 69, 107 |
| abstract_inverted_index.this | 164, 173 |
| abstract_inverted_index.want | 18, 23 |
| abstract_inverted_index.when | 191, 197, 208 |
| abstract_inverted_index.$δ$, | 224 |
| abstract_inverted_index.(iii) | 207 |
| abstract_inverted_index.Chan, | 116 |
| abstract_inverted_index.Dijk, | 118 |
| abstract_inverted_index.PTAS. | 162 |
| abstract_inverted_index.QPTAS | 144 |
| abstract_inverted_index.Wolff | 122 |
| abstract_inverted_index.cases | 187 |
| abstract_inverted_index.edges | 43 |
| abstract_inverted_index.given | 9, 32 |
| abstract_inverted_index.i.e., | 21, 213 |
| abstract_inverted_index.known | 80 |
| abstract_inverted_index.least | 216, 223 |
| abstract_inverted_index.other | 240 |
| abstract_inverted_index.plane | 15 |
| abstract_inverted_index.stab, | 20 |
| abstract_inverted_index.study | 1, 125 |
| abstract_inverted_index.there | 34 |
| abstract_inverted_index.these | 127 |
| abstract_inverted_index.total | 66, 104 |
| abstract_inverted_index.which | 6 |
| abstract_inverted_index.while | 225 |
| abstract_inverted_index.whose | 219 |
| abstract_inverted_index.width | 200 |
| abstract_inverted_index.(i.e., | 95 |
| abstract_inverted_index.PTASes | 184 |
| abstract_inverted_index.Venzin | 139 |
| abstract_inverted_index.[2021] | 140 |
| abstract_inverted_index.admits | 160 |
| abstract_inverted_index.either | 96 |
| abstract_inverted_index.length | 67, 105, 220 |
| abstract_inverted_index.obtain | 167, 178, 183 |
| abstract_inverted_index.paper, | 165 |
| abstract_inverted_index.result | 234 |
| abstract_inverted_index.select | 25 |
| abstract_inverted_index.general | 75 |
| abstract_inverted_index.height, | 205 |
| abstract_inverted_index.implies | 236 |
| abstract_inverted_index.lengths | 228 |
| abstract_inverted_index.minimum | 65, 103, 245 |
| abstract_inverted_index.problem | 51, 84, 159 |
| abstract_inverted_index.segment | 38 |
| abstract_inverted_index.special | 186 |
| abstract_inverted_index.whether | 157 |
| abstract_inverted_index.Fleszar, | 119 |
| abstract_inverted_index.Gallato, | 136 |
| abstract_inverted_index.NP-hard. | 115 |
| abstract_inverted_index.STABBING | 151 |
| abstract_inverted_index.constant | 131 |
| abstract_inverted_index.improved | 237 |
| abstract_inverted_index.network. | 247 |
| abstract_inverted_index.opposite | 42 |
| abstract_inverted_index.problem, | 78 |
| abstract_inverted_index.problems | 4, 128, 241 |
| abstract_inverted_index.segments | 27, 63, 101 |
| abstract_inverted_index.settling | 172 |
| abstract_inverted_index.squares, | 195 |
| abstract_inverted_index.stabbed. | 73, 111 |
| abstract_inverted_index.stabbing | 3, 50, 77, 83 |
| abstract_inverted_index.variants | 113 |
| abstract_inverted_index.vertical | 97 |
| abstract_inverted_index.Manhattan | 246 |
| abstract_inverted_index.Recently, | 134 |
| abstract_inverted_index.STABBING, | 171 |
| abstract_inverted_index.Svensson, | 137 |
| abstract_inverted_index.algorithm | 149 |
| abstract_inverted_index.presented | 142 |
| abstract_inverted_index.providing | 130 |
| abstract_inverted_index.question. | 174 |
| abstract_inverted_index.rectangle | 2, 33, 49, 76 |
| abstract_inverted_index.Spoerhase, | 120 |
| abstract_inverted_index.horizontal | 48, 61 |
| abstract_inverted_index.intersects | 40 |
| abstract_inverted_index.rectangles | 12, 71, 109, 193, 210 |
| abstract_inverted_index.$δ$-large, | 212 |
| abstract_inverted_index.(STABBING), | 52 |
| abstract_inverted_index.Eisenbrand, | 135 |
| abstract_inverted_index.algorithms. | 133 |
| abstract_inverted_index.generalized | 244 |
| abstract_inverted_index.horizontal) | 99 |
| abstract_inverted_index.rectangle's | 199 |
| abstract_inverted_index.rectilinear | 94 |
| abstract_inverted_index.HV-Stabbing, | 176 |
| abstract_inverted_index.HV-Stabbing: | 189 |
| abstract_inverted_index.axis-aligned | 11 |
| abstract_inverted_index.approximation | 132 |
| abstract_inverted_index.(HV-Stabbing), | 85 |
| abstract_inverted_index.approximations | 238 |
| abstract_inverted_index.8-approximation | 148 |
| abstract_inverted_index.[2018]initiated | 123 |
| abstract_inverted_index.polynomial-time | 147 |
| abstract_inverted_index.horizontal-vertical | 82 |
| abstract_inverted_index.$(2+\varepsilon)$-approximation. | 180 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 3 |
| citation_normalized_percentile |