A quantitative framework for sets of exact approximation order by rational numbers Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2510.18451
In this paper we study a quantitative notion of exactness within Diophantine approximation. Given $Ψ:(0,\infty)\to (0,\infty)$ and $ω:(0,\infty)\to (0,1)$ satisfying $\lim_{q\to\infty}ω(q)=0$, we study the set of points, which we call $E(Ψ,ω)$, that are $Ψ$-well approximable but not $Ψ(1-ω)$-well approximable. We prove results on the cardinality and dimension of $E(Ψ,ω)$. In particular we obtain the following general statements: (i) For any $ω:(0,\infty)\to (0,1)$ and $τ>2$ there exists $Ψ:(0,\infty)\to (0,\infty)$ such that $\lim_{q\to\infty}\frac{-\log Ψ(q)}{\log q}=τ$ and $E(Ψ,ω)\neq\emptyset.$ (ii) Under natural monotonicity assumptions on $Ψ$ and $ω,$ we prove that if $ω$ decays to zero sufficiently slowly (in a way that depends upon $Ψ$) then $E(Ψ,ω)$ is uncountable. Moreover, under further natural assumptions on $Ψ$ we can calculate the Hausdorff dimension of $E(Ψ,ω)$. Our main result demonstrates a new threshold for the behaviour of $E(Ψ,ω)$. A particular instance of this threshold is illustrated by considering functions of the form $Ψ_τ(q)=q^{-τ}$ when $τ\in \mathbb{N}_{\geq 3}$. For these functions we prove the following: (iii) If $ω(q)= Cq^{-τ(τ-1)}$ for some sufficiently large $C$ or $ω(q)=q^{-τ'}$ for some $τ'<τ(τ-1),$ then $E(Ψ_τ,ω)$ is uncountable and we calculate its Hausdorff dimension. (iv) If $ω(q)< cq^{-τ(τ-1)}$ for some $c\in (0,1)$ for all $q$ sufficiently large then $E(Ψ_τ,ω)=\emptyset.$
Related Topics
- Type
- preprint
- Landing Page
- http://arxiv.org/abs/2510.18451
- https://arxiv.org/pdf/2510.18451
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4416056109
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4416056109Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2510.18451Digital Object Identifier
- Title
-
A quantitative framework for sets of exact approximation order by rational numbersWork title
- Type
-
preprintOpenAlex work type
- Publication year
-
2025Year of publication
- Publication date
-
2025-10-21Full publication date if available
- Authors
-
Simon Baker, Benjamin WardList of authors in order
- Landing page
-
https://arxiv.org/abs/2510.18451Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2510.18451Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2510.18451Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4416056109 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2510.18451 |
| ids.doi | https://doi.org/10.48550/arxiv.2510.18451 |
| ids.openalex | https://openalex.org/W4416056109 |
| fwci | |
| type | preprint |
| title | A quantitative framework for sets of exact approximation order by rational numbers |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | |
| locations[0].id | pmh:oai:arXiv.org:2510.18451 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2510.18451 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2510.18451 |
| locations[1].id | doi:10.48550/arxiv.2510.18451 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2510.18451 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5061943510 |
| authorships[0].author.orcid | https://orcid.org/0000-0002-0716-6236 |
| authorships[0].author.display_name | Simon Baker |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Baker, Simon |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5083919917 |
| authorships[1].author.orcid | https://orcid.org/0000-0003-0637-7709 |
| authorships[1].author.display_name | Benjamin Ward |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Ward, Benjamin |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2510.18451 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-24T00:00:00 |
| display_name | A quantitative framework for sets of exact approximation order by rational numbers |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-28T10:38:06.033504 |
| primary_topic | |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2510.18451 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2510.18451 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2510.18451 |
| primary_location.id | pmh:oai:arXiv.org:2510.18451 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2510.18451 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2510.18451 |
| publication_date | 2025-10-21 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.A | 132 |
| abstract_inverted_index.a | 5, 95, 124 |
| abstract_inverted_index.If | 159, 183 |
| abstract_inverted_index.In | 0, 49 |
| abstract_inverted_index.We | 39 |
| abstract_inverted_index.by | 140 |
| abstract_inverted_index.if | 87 |
| abstract_inverted_index.is | 103, 138, 174 |
| abstract_inverted_index.of | 8, 25, 47, 118, 130, 135, 143 |
| abstract_inverted_index.on | 42, 80, 110 |
| abstract_inverted_index.or | 167 |
| abstract_inverted_index.to | 90 |
| abstract_inverted_index.we | 3, 21, 28, 51, 84, 112, 154, 177 |
| abstract_inverted_index.$C$ | 166 |
| abstract_inverted_index.$q$ | 192 |
| abstract_inverted_index.(i) | 57 |
| abstract_inverted_index.(in | 94 |
| abstract_inverted_index.For | 58, 151 |
| abstract_inverted_index.Our | 120 |
| abstract_inverted_index.all | 191 |
| abstract_inverted_index.and | 16, 45, 62, 73, 82, 176 |
| abstract_inverted_index.any | 59 |
| abstract_inverted_index.are | 32 |
| abstract_inverted_index.but | 35 |
| abstract_inverted_index.can | 113 |
| abstract_inverted_index.for | 127, 162, 169, 186, 190 |
| abstract_inverted_index.its | 179 |
| abstract_inverted_index.new | 125 |
| abstract_inverted_index.not | 36 |
| abstract_inverted_index.set | 24 |
| abstract_inverted_index.the | 23, 43, 53, 115, 128, 144, 156 |
| abstract_inverted_index.way | 96 |
| abstract_inverted_index.$Ψ$ | 81, 111 |
| abstract_inverted_index.$ω$ | 88 |
| abstract_inverted_index.(ii) | 75 |
| abstract_inverted_index.(iv) | 182 |
| abstract_inverted_index.3}$. | 150 |
| abstract_inverted_index.call | 29 |
| abstract_inverted_index.form | 145 |
| abstract_inverted_index.main | 121 |
| abstract_inverted_index.some | 163, 170, 187 |
| abstract_inverted_index.such | 68 |
| abstract_inverted_index.that | 31, 69, 86, 97 |
| abstract_inverted_index.then | 101, 172, 195 |
| abstract_inverted_index.this | 1, 136 |
| abstract_inverted_index.upon | 99 |
| abstract_inverted_index.when | 147 |
| abstract_inverted_index.zero | 91 |
| abstract_inverted_index.$c\in | 188 |
| abstract_inverted_index.$Ψ$) | 100 |
| abstract_inverted_index.$ω,$ | 83 |
| abstract_inverted_index.(iii) | 158 |
| abstract_inverted_index.Given | 13 |
| abstract_inverted_index.Under | 76 |
| abstract_inverted_index.large | 165, 194 |
| abstract_inverted_index.paper | 2 |
| abstract_inverted_index.prove | 40, 85, 155 |
| abstract_inverted_index.study | 4, 22 |
| abstract_inverted_index.there | 64 |
| abstract_inverted_index.these | 152 |
| abstract_inverted_index.under | 106 |
| abstract_inverted_index.which | 27 |
| abstract_inverted_index.$τ\in | 148 |
| abstract_inverted_index.(0,1)$ | 18, 61, 189 |
| abstract_inverted_index.decays | 89 |
| abstract_inverted_index.exists | 65 |
| abstract_inverted_index.notion | 7 |
| abstract_inverted_index.obtain | 52 |
| abstract_inverted_index.q}=τ$ | 72 |
| abstract_inverted_index.result | 122 |
| abstract_inverted_index.slowly | 93 |
| abstract_inverted_index.within | 10 |
| abstract_inverted_index.$ω(q)= | 160 |
| abstract_inverted_index.depends | 98 |
| abstract_inverted_index.further | 107 |
| abstract_inverted_index.general | 55 |
| abstract_inverted_index.natural | 77, 108 |
| abstract_inverted_index.points, | 26 |
| abstract_inverted_index.results | 41 |
| abstract_inverted_index.instance | 134 |
| abstract_inverted_index.$Ψ$-well | 33 |
| abstract_inverted_index.$τ>2$ | 63 |
| abstract_inverted_index.Hausdorff | 116, 180 |
| abstract_inverted_index.Moreover, | 105 |
| abstract_inverted_index.behaviour | 129 |
| abstract_inverted_index.calculate | 114, 178 |
| abstract_inverted_index.dimension | 46, 117 |
| abstract_inverted_index.exactness | 9 |
| abstract_inverted_index.following | 54 |
| abstract_inverted_index.functions | 142, 153 |
| abstract_inverted_index.threshold | 126, 137 |
| abstract_inverted_index.$E(Ψ,ω)$ | 102 |
| abstract_inverted_index.$ω(q)< | 184 |
| abstract_inverted_index.dimension. | 181 |
| abstract_inverted_index.following: | 157 |
| abstract_inverted_index.particular | 50, 133 |
| abstract_inverted_index.satisfying | 19 |
| abstract_inverted_index.$E(Ψ,ω)$, | 30 |
| abstract_inverted_index.$E(Ψ,ω)$. | 48, 119, 131 |
| abstract_inverted_index.(0,\infty)$ | 15, 67 |
| abstract_inverted_index.Diophantine | 11 |
| abstract_inverted_index.assumptions | 79, 109 |
| abstract_inverted_index.cardinality | 44 |
| abstract_inverted_index.considering | 141 |
| abstract_inverted_index.illustrated | 139 |
| abstract_inverted_index.statements: | 56 |
| abstract_inverted_index.uncountable | 175 |
| abstract_inverted_index.Ψ(q)}{\log | 71 |
| abstract_inverted_index.approximable | 34 |
| abstract_inverted_index.demonstrates | 123 |
| abstract_inverted_index.monotonicity | 78 |
| abstract_inverted_index.quantitative | 6 |
| abstract_inverted_index.sufficiently | 92, 164, 193 |
| abstract_inverted_index.uncountable. | 104 |
| abstract_inverted_index.$E(Ψ_τ,ω)$ | 173 |
| abstract_inverted_index.approximable. | 38 |
| abstract_inverted_index.approximation. | 12 |
| abstract_inverted_index.$Ψ(1-ω)$-well | 37 |
| abstract_inverted_index.Cq^{-τ(τ-1)}$ | 161 |
| abstract_inverted_index.cq^{-τ(τ-1)}$ | 185 |
| abstract_inverted_index.$ω(q)=q^{-τ'}$ | 168 |
| abstract_inverted_index.\mathbb{N}_{\geq | 149 |
| abstract_inverted_index.$Ψ:(0,\infty)\to | 14, 66 |
| abstract_inverted_index.$ω:(0,\infty)\to | 17, 60 |
| abstract_inverted_index.$Ψ_τ(q)=q^{-τ}$ | 146 |
| abstract_inverted_index.$τ'<τ(τ-1),$ | 171 |
| abstract_inverted_index.$E(Ψ,ω)\neq\emptyset.$ | 74 |
| abstract_inverted_index.$E(Ψ_τ,ω)=\emptyset.$ | 196 |
| abstract_inverted_index.$\lim_{q\to\infty}ω(q)=0$, | 20 |
| abstract_inverted_index.$\lim_{q\to\infty}\frac{-\log | 70 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |