A quasi-Grassmannian gradient flow model for eigenvalue problems Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2506.20195
We propose a quasi-Grassmannian gradient flow model for eigenvalue problems of linear operators, aiming to efficiently address many eigenpairs. Our model inherently ensures asymptotic orthogonality: without the need for initial orthogonality, the solution naturally evolves toward being orthogonal over time. We establish the well-posedness of the model, and provide the analytical representation of solutions. Through asymptotic analysis, we show that the gradient converges exponentially to zero and that the energy decreases exponentially to its minimum. This implies that the solution of the quasi-Grassmannian gradient flow model converges to the solution of the eigenvalue problems as time progresses. These properties not only eliminate the need for explicit orthogonalization in numerical computation but also significantly enhance robustness of the model, rendering it far more resilient to numerical perturbations than conventional methods.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2506.20195
- https://arxiv.org/pdf/2506.20195
- OA Status
- green
- OpenAlex ID
- https://openalex.org/W4415164210
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4415164210Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2506.20195Digital Object Identifier
- Title
-
A quasi-Grassmannian gradient flow model for eigenvalue problemsWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-06-25Full publication date if available
- Authors
-
Shengyue Wang, Aihui ZhouList of authors in order
- Landing page
-
https://arxiv.org/abs/2506.20195Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2506.20195Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2506.20195Direct OA link when available
- Cited by
-
0Total citation count in OpenAlex
Full payload
| id | https://openalex.org/W4415164210 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2506.20195 |
| ids.doi | https://doi.org/10.48550/arxiv.2506.20195 |
| ids.openalex | https://openalex.org/W4415164210 |
| fwci | |
| type | preprint |
| title | A quasi-Grassmannian gradient flow model for eigenvalue problems |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10229 |
| topics[0].field.id | https://openalex.org/fields/26 |
| topics[0].field.display_name | Mathematics |
| topics[0].score | 0.996399998664856 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2604 |
| topics[0].subfield.display_name | Applied Mathematics |
| topics[0].display_name | Geometric Analysis and Curvature Flows |
| topics[1].id | https://openalex.org/T10194 |
| topics[1].field.id | https://openalex.org/fields/26 |
| topics[1].field.display_name | Mathematics |
| topics[1].score | 0.9797999858856201 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2604 |
| topics[1].subfield.display_name | Applied Mathematics |
| topics[1].display_name | Nonlinear Partial Differential Equations |
| topics[2].id | https://openalex.org/T11205 |
| topics[2].field.id | https://openalex.org/fields/26 |
| topics[2].field.display_name | Mathematics |
| topics[2].score | 0.9696000218391418 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2610 |
| topics[2].subfield.display_name | Mathematical Physics |
| topics[2].display_name | Numerical methods in inverse problems |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2506.20195 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2506.20195 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | text |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2506.20195 |
| locations[1].id | doi:10.48550/arxiv.2506.20195 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2506.20195 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5010954806 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Shengyue Wang |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Wang, Shengyue |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5113202217 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Aihui Zhou |
| authorships[1].author_position | last |
| authorships[1].raw_author_name | Zhou, Aihui |
| authorships[1].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2506.20195 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-14T00:00:00 |
| display_name | A quasi-Grassmannian gradient flow model for eigenvalue problems |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10229 |
| primary_topic.field.id | https://openalex.org/fields/26 |
| primary_topic.field.display_name | Mathematics |
| primary_topic.score | 0.996399998664856 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2604 |
| primary_topic.subfield.display_name | Applied Mathematics |
| primary_topic.display_name | Geometric Analysis and Curvature Flows |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2506.20195 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2506.20195 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2506.20195 |
| primary_location.id | pmh:oai:arXiv.org:2506.20195 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2506.20195 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | text |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2506.20195 |
| publication_date | 2025-06-25 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 2 |
| abstract_inverted_index.We | 0, 40 |
| abstract_inverted_index.as | 94 |
| abstract_inverted_index.in | 107 |
| abstract_inverted_index.it | 119 |
| abstract_inverted_index.of | 10, 44, 52, 80, 90, 115 |
| abstract_inverted_index.to | 14, 64, 72, 87, 123 |
| abstract_inverted_index.we | 57 |
| abstract_inverted_index.Our | 19 |
| abstract_inverted_index.and | 47, 66 |
| abstract_inverted_index.but | 110 |
| abstract_inverted_index.far | 120 |
| abstract_inverted_index.for | 7, 28, 104 |
| abstract_inverted_index.its | 73 |
| abstract_inverted_index.not | 99 |
| abstract_inverted_index.the | 26, 31, 42, 45, 49, 60, 68, 78, 81, 88, 91, 102, 116 |
| abstract_inverted_index.This | 75 |
| abstract_inverted_index.also | 111 |
| abstract_inverted_index.flow | 5, 84 |
| abstract_inverted_index.many | 17 |
| abstract_inverted_index.more | 121 |
| abstract_inverted_index.need | 27, 103 |
| abstract_inverted_index.only | 100 |
| abstract_inverted_index.over | 38 |
| abstract_inverted_index.show | 58 |
| abstract_inverted_index.than | 126 |
| abstract_inverted_index.that | 59, 67, 77 |
| abstract_inverted_index.time | 95 |
| abstract_inverted_index.zero | 65 |
| abstract_inverted_index.These | 97 |
| abstract_inverted_index.being | 36 |
| abstract_inverted_index.model | 6, 20, 85 |
| abstract_inverted_index.time. | 39 |
| abstract_inverted_index.aiming | 13 |
| abstract_inverted_index.energy | 69 |
| abstract_inverted_index.linear | 11 |
| abstract_inverted_index.model, | 46, 117 |
| abstract_inverted_index.toward | 35 |
| abstract_inverted_index.Through | 54 |
| abstract_inverted_index.address | 16 |
| abstract_inverted_index.enhance | 113 |
| abstract_inverted_index.ensures | 22 |
| abstract_inverted_index.evolves | 34 |
| abstract_inverted_index.implies | 76 |
| abstract_inverted_index.initial | 29 |
| abstract_inverted_index.propose | 1 |
| abstract_inverted_index.provide | 48 |
| abstract_inverted_index.without | 25 |
| abstract_inverted_index.explicit | 105 |
| abstract_inverted_index.gradient | 4, 61, 83 |
| abstract_inverted_index.methods. | 128 |
| abstract_inverted_index.minimum. | 74 |
| abstract_inverted_index.problems | 9, 93 |
| abstract_inverted_index.solution | 32, 79, 89 |
| abstract_inverted_index.analysis, | 56 |
| abstract_inverted_index.converges | 62, 86 |
| abstract_inverted_index.decreases | 70 |
| abstract_inverted_index.eliminate | 101 |
| abstract_inverted_index.establish | 41 |
| abstract_inverted_index.naturally | 33 |
| abstract_inverted_index.numerical | 108, 124 |
| abstract_inverted_index.rendering | 118 |
| abstract_inverted_index.resilient | 122 |
| abstract_inverted_index.analytical | 50 |
| abstract_inverted_index.asymptotic | 23, 55 |
| abstract_inverted_index.eigenvalue | 8, 92 |
| abstract_inverted_index.inherently | 21 |
| abstract_inverted_index.operators, | 12 |
| abstract_inverted_index.orthogonal | 37 |
| abstract_inverted_index.properties | 98 |
| abstract_inverted_index.robustness | 114 |
| abstract_inverted_index.solutions. | 53 |
| abstract_inverted_index.computation | 109 |
| abstract_inverted_index.efficiently | 15 |
| abstract_inverted_index.eigenpairs. | 18 |
| abstract_inverted_index.progresses. | 96 |
| abstract_inverted_index.conventional | 127 |
| abstract_inverted_index.exponentially | 63, 71 |
| abstract_inverted_index.perturbations | 125 |
| abstract_inverted_index.significantly | 112 |
| abstract_inverted_index.orthogonality, | 30 |
| abstract_inverted_index.orthogonality: | 24 |
| abstract_inverted_index.representation | 51 |
| abstract_inverted_index.well-posedness | 43 |
| abstract_inverted_index.orthogonalization | 106 |
| abstract_inverted_index.quasi-Grassmannian | 3, 82 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 2 |
| citation_normalized_percentile |