A Query-Specific Representation-Based Sampling Strategy for Imbalanced Classification Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.36227/techrxiv.171073556.66443984/v1
Data imbalance is a common challenge for many classification tasks where the dataset suffers from disproportionate partitions of samples between classes. Typical techniques for handling class imbalance are either based on algorithmic or data-driven strategies. The algorithmic strategies reduce model bias towards the majority classes by modifying the classification algorithms, and the data-driven strategies revise the datasets in terms of resampling. The current implementations of the datadriven strategy often ignore the correlations between instances but assign a uniform sampled dataset to all queries despite their distinctions. This may eliminate valid instances and retain irrelevant instances during sampling, thereby negatively affecting classification performance. To address this limitation, this paper presents a representation-based sampling (RBS) approach, implemented in a bi-stage hybrid framework, including a training stage to compile the sampling dictionary and a retrieving stage to sample the data with respect to the query. In the first stage, RBS learns the correlations between each object per class via a reconstruction model, and produces a sampling dictionary for each class. In the second stage, for a given query, the sampled data specific to this query in each class are retrieved via the offline sampling dictionary by locating its most related object in each class. Because the number of the sampled data in each class are unified, the classification of the query is guaranteed to be conducted on a class-balance dataset. The systematic experiments uisng image datasets demonstrate that RBS can effectively solve the data imbalance issue in classification and improve the representation of images with correlated features, leading to a better recognition performance.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- https://doi.org/10.36227/techrxiv.171073556.66443984/v1
- https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984
- OA Status
- gold
- References
- 55
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4392923161
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4392923161Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.36227/techrxiv.171073556.66443984/v1Digital Object Identifier
- Title
-
A Query-Specific Representation-Based Sampling Strategy for Imbalanced ClassificationWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-03-18Full publication date if available
- Authors
-
Yi Tan, Yanpeng Qu, Longzhi Yang, Hong Bo Liu, Changjing Shang, Qiang ShenList of authors in order
- Landing page
-
https://doi.org/10.36227/techrxiv.171073556.66443984/v1Publisher landing page
- PDF URL
-
https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
goldOpen access status per OpenAlex
- OA URL
-
https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984Direct OA link when available
- Concepts
-
Representation (politics), Sampling (signal processing), Computer science, Artificial intelligence, Machine learning, Data mining, Political science, Law, Filter (signal processing), Computer vision, PoliticsTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- References (count)
-
55Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4392923161 |
|---|---|
| doi | https://doi.org/10.36227/techrxiv.171073556.66443984/v1 |
| ids.doi | https://doi.org/10.36227/techrxiv.171073556.66443984/v1 |
| ids.openalex | https://openalex.org/W4392923161 |
| fwci | 0.0 |
| type | preprint |
| title | A Query-Specific Representation-Based Sampling Strategy for Imbalanced Classification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T11652 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.9997000098228455 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1702 |
| topics[0].subfield.display_name | Artificial Intelligence |
| topics[0].display_name | Imbalanced Data Classification Techniques |
| topics[1].id | https://openalex.org/T11512 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9872000217437744 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Anomaly Detection Techniques and Applications |
| topics[2].id | https://openalex.org/T11396 |
| topics[2].field.id | https://openalex.org/fields/36 |
| topics[2].field.display_name | Health Professions |
| topics[2].score | 0.9613999724388123 |
| topics[2].domain.id | https://openalex.org/domains/4 |
| topics[2].domain.display_name | Health Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/3605 |
| topics[2].subfield.display_name | Health Information Management |
| topics[2].display_name | Artificial Intelligence in Healthcare |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2776359362 |
| concepts[0].level | 3 |
| concepts[0].score | 0.5889752507209778 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2145286 |
| concepts[0].display_name | Representation (politics) |
| concepts[1].id | https://openalex.org/C140779682 |
| concepts[1].level | 3 |
| concepts[1].score | 0.5660058856010437 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q210868 |
| concepts[1].display_name | Sampling (signal processing) |
| concepts[2].id | https://openalex.org/C41008148 |
| concepts[2].level | 0 |
| concepts[2].score | 0.5447219014167786 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[2].display_name | Computer science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.43774065375328064 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C119857082 |
| concepts[4].level | 1 |
| concepts[4].score | 0.40364882349967957 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[4].display_name | Machine learning |
| concepts[5].id | https://openalex.org/C124101348 |
| concepts[5].level | 1 |
| concepts[5].score | 0.3808291256427765 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[5].display_name | Data mining |
| concepts[6].id | https://openalex.org/C17744445 |
| concepts[6].level | 0 |
| concepts[6].score | 0.13050955533981323 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q36442 |
| concepts[6].display_name | Political science |
| concepts[7].id | https://openalex.org/C199539241 |
| concepts[7].level | 1 |
| concepts[7].score | 0.0 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q7748 |
| concepts[7].display_name | Law |
| concepts[8].id | https://openalex.org/C106131492 |
| concepts[8].level | 2 |
| concepts[8].score | 0.0 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q3072260 |
| concepts[8].display_name | Filter (signal processing) |
| concepts[9].id | https://openalex.org/C31972630 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[9].display_name | Computer vision |
| concepts[10].id | https://openalex.org/C94625758 |
| concepts[10].level | 2 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q7163 |
| concepts[10].display_name | Politics |
| keywords[0].id | https://openalex.org/keywords/representation |
| keywords[0].score | 0.5889752507209778 |
| keywords[0].display_name | Representation (politics) |
| keywords[1].id | https://openalex.org/keywords/sampling |
| keywords[1].score | 0.5660058856010437 |
| keywords[1].display_name | Sampling (signal processing) |
| keywords[2].id | https://openalex.org/keywords/computer-science |
| keywords[2].score | 0.5447219014167786 |
| keywords[2].display_name | Computer science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.43774065375328064 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/machine-learning |
| keywords[4].score | 0.40364882349967957 |
| keywords[4].display_name | Machine learning |
| keywords[5].id | https://openalex.org/keywords/data-mining |
| keywords[5].score | 0.3808291256427765 |
| keywords[5].display_name | Data mining |
| keywords[6].id | https://openalex.org/keywords/political-science |
| keywords[6].score | 0.13050955533981323 |
| keywords[6].display_name | Political science |
| language | en |
| locations[0].id | doi:10.36227/techrxiv.171073556.66443984/v1 |
| locations[0].is_oa | True |
| locations[0].source | |
| locations[0].license | cc-by |
| locations[0].pdf_url | https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984 |
| locations[0].version | acceptedVersion |
| locations[0].raw_type | posted-content |
| locations[0].license_id | https://openalex.org/licenses/cc-by |
| locations[0].is_accepted | True |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | https://doi.org/10.36227/techrxiv.171073556.66443984/v1 |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5101287250 |
| authorships[0].author.orcid | https://orcid.org/0009-0007-8302-4540 |
| authorships[0].author.display_name | Yi Tan |
| authorships[0].countries | CN, GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[0].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I16038530 |
| authorships[0].affiliations[1].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[0].affiliations[2].institution_ids | https://openalex.org/I43313876 |
| authorships[0].affiliations[2].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[0].institutions[0].id | https://openalex.org/I43313876 |
| authorships[0].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[0].institutions[0].country_code | CN |
| authorships[0].institutions[0].display_name | Dalian Maritime University |
| authorships[0].institutions[1].id | https://openalex.org/I16038530 |
| authorships[0].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[0].institutions[1].type | education |
| authorships[0].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[0].institutions[1].country_code | GB |
| authorships[0].institutions[1].display_name | Aberystwyth University |
| authorships[0].institutions[2].id | https://openalex.org/I32394136 |
| authorships[0].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[0].institutions[2].type | education |
| authorships[0].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[0].institutions[2].country_code | GB |
| authorships[0].institutions[2].display_name | Northumbria University |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yi Tan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[1].author.id | https://openalex.org/A5047667818 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-2441-713X |
| authorships[1].author.display_name | Yanpeng Qu |
| authorships[1].countries | CN, GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[1].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[1].affiliations[1].institution_ids | https://openalex.org/I43313876 |
| authorships[1].affiliations[1].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[1].affiliations[2].institution_ids | https://openalex.org/I16038530 |
| authorships[1].affiliations[2].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[1].institutions[0].id | https://openalex.org/I43313876 |
| authorships[1].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[1].institutions[0].country_code | CN |
| authorships[1].institutions[0].display_name | Dalian Maritime University |
| authorships[1].institutions[1].id | https://openalex.org/I16038530 |
| authorships[1].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[1].institutions[1].type | education |
| authorships[1].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[1].institutions[1].country_code | GB |
| authorships[1].institutions[1].display_name | Aberystwyth University |
| authorships[1].institutions[2].id | https://openalex.org/I32394136 |
| authorships[1].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[1].institutions[2].type | education |
| authorships[1].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[1].institutions[2].country_code | GB |
| authorships[1].institutions[2].display_name | Northumbria University |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yanpeng Qu |
| authorships[1].is_corresponding | True |
| authorships[1].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[2].author.id | https://openalex.org/A5065079117 |
| authorships[2].author.orcid | https://orcid.org/0000-0003-2115-4909 |
| authorships[2].author.display_name | Longzhi Yang |
| authorships[2].countries | CN, GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[2].affiliations[0].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[2].affiliations[1].institution_ids | https://openalex.org/I16038530 |
| authorships[2].affiliations[1].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[2].affiliations[2].institution_ids | https://openalex.org/I32394136 |
| authorships[2].affiliations[2].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[2].institutions[0].id | https://openalex.org/I43313876 |
| authorships[2].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[2].institutions[0].country_code | CN |
| authorships[2].institutions[0].display_name | Dalian Maritime University |
| authorships[2].institutions[1].id | https://openalex.org/I16038530 |
| authorships[2].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[2].institutions[1].type | education |
| authorships[2].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[2].institutions[1].country_code | GB |
| authorships[2].institutions[1].display_name | Aberystwyth University |
| authorships[2].institutions[2].id | https://openalex.org/I32394136 |
| authorships[2].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[2].institutions[2].type | education |
| authorships[2].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[2].institutions[2].country_code | GB |
| authorships[2].institutions[2].display_name | Northumbria University |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Longzhi Yang |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[3].author.id | https://openalex.org/A5019534771 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2151-0646 |
| authorships[3].author.display_name | Hong Bo Liu |
| authorships[3].countries | CN, GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I43313876 |
| authorships[3].affiliations[0].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I32394136 |
| authorships[3].affiliations[1].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[3].affiliations[2].institution_ids | https://openalex.org/I16038530 |
| authorships[3].affiliations[2].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[3].institutions[0].id | https://openalex.org/I43313876 |
| authorships[3].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[3].institutions[0].country_code | CN |
| authorships[3].institutions[0].display_name | Dalian Maritime University |
| authorships[3].institutions[1].id | https://openalex.org/I16038530 |
| authorships[3].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[3].institutions[1].type | education |
| authorships[3].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[3].institutions[1].country_code | GB |
| authorships[3].institutions[1].display_name | Aberystwyth University |
| authorships[3].institutions[2].id | https://openalex.org/I32394136 |
| authorships[3].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[3].institutions[2].type | education |
| authorships[3].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[3].institutions[2].country_code | GB |
| authorships[3].institutions[2].display_name | Northumbria University |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Hongbo Liu |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[4].author.id | https://openalex.org/A5039652471 |
| authorships[4].author.orcid | https://orcid.org/0000-0001-6375-6276 |
| authorships[4].author.display_name | Changjing Shang |
| authorships[4].countries | CN, GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I32394136 |
| authorships[4].affiliations[0].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I16038530 |
| authorships[4].affiliations[1].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[4].affiliations[2].institution_ids | https://openalex.org/I43313876 |
| authorships[4].affiliations[2].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[4].institutions[0].id | https://openalex.org/I43313876 |
| authorships[4].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[4].institutions[0].country_code | CN |
| authorships[4].institutions[0].display_name | Dalian Maritime University |
| authorships[4].institutions[1].id | https://openalex.org/I16038530 |
| authorships[4].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[4].institutions[1].type | education |
| authorships[4].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[4].institutions[1].country_code | GB |
| authorships[4].institutions[1].display_name | Aberystwyth University |
| authorships[4].institutions[2].id | https://openalex.org/I32394136 |
| authorships[4].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[4].institutions[2].type | education |
| authorships[4].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[4].institutions[2].country_code | GB |
| authorships[4].institutions[2].display_name | Northumbria University |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Changjing Shang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[5].author.id | https://openalex.org/A5036010787 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9333-4605 |
| authorships[5].author.display_name | Qiang Shen |
| authorships[5].countries | CN, GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I16038530 |
| authorships[5].affiliations[0].raw_affiliation_string | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K. |
| authorships[5].affiliations[1].institution_ids | https://openalex.org/I43313876 |
| authorships[5].affiliations[1].raw_affiliation_string | with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| authorships[5].affiliations[2].institution_ids | https://openalex.org/I32394136 |
| authorships[5].affiliations[2].raw_affiliation_string | Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U. |
| authorships[5].institutions[0].id | https://openalex.org/I43313876 |
| authorships[5].institutions[0].ror | https://ror.org/002b7nr53 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I43313876 |
| authorships[5].institutions[0].country_code | CN |
| authorships[5].institutions[0].display_name | Dalian Maritime University |
| authorships[5].institutions[1].id | https://openalex.org/I16038530 |
| authorships[5].institutions[1].ror | https://ror.org/015m2p889 |
| authorships[5].institutions[1].type | education |
| authorships[5].institutions[1].lineage | https://openalex.org/I16038530 |
| authorships[5].institutions[1].country_code | GB |
| authorships[5].institutions[1].display_name | Aberystwyth University |
| authorships[5].institutions[2].id | https://openalex.org/I32394136 |
| authorships[5].institutions[2].ror | https://ror.org/049e6bc10 |
| authorships[5].institutions[2].type | education |
| authorships[5].institutions[2].lineage | https://openalex.org/I32394136 |
| authorships[5].institutions[2].country_code | GB |
| authorships[5].institutions[2].display_name | Northumbria University |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Qiang Shen |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | Department of Computer Science, Fac-ulty of Business and Physical Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3DB, U.K., Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, U., with the College of Artificial Intelli-gence, Dalian Maritime University, Dalian, 116026, China. |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984 |
| open_access.oa_status | gold |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Query-Specific Representation-Based Sampling Strategy for Imbalanced Classification |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T11652 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.9997000098228455 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1702 |
| primary_topic.subfield.display_name | Artificial Intelligence |
| primary_topic.display_name | Imbalanced Data Classification Techniques |
| related_works | https://openalex.org/W2961085424, https://openalex.org/W4306674287, https://openalex.org/W3046775127, https://openalex.org/W3107602296, https://openalex.org/W4394896187, https://openalex.org/W3170094116, https://openalex.org/W4386462264, https://openalex.org/W4364306694, https://openalex.org/W4312192474, https://openalex.org/W4283697347 |
| cited_by_count | 0 |
| locations_count | 1 |
| best_oa_location.id | doi:10.36227/techrxiv.171073556.66443984/v1 |
| best_oa_location.is_oa | True |
| best_oa_location.source | |
| best_oa_location.license | cc-by |
| best_oa_location.pdf_url | https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984 |
| best_oa_location.version | acceptedVersion |
| best_oa_location.raw_type | posted-content |
| best_oa_location.license_id | https://openalex.org/licenses/cc-by |
| best_oa_location.is_accepted | True |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | https://doi.org/10.36227/techrxiv.171073556.66443984/v1 |
| primary_location.id | doi:10.36227/techrxiv.171073556.66443984/v1 |
| primary_location.is_oa | True |
| primary_location.source | |
| primary_location.license | cc-by |
| primary_location.pdf_url | https://www.techrxiv.org/doi/pdf/10.36227/techrxiv.171073556.66443984 |
| primary_location.version | acceptedVersion |
| primary_location.raw_type | posted-content |
| primary_location.license_id | https://openalex.org/licenses/cc-by |
| primary_location.is_accepted | True |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | https://doi.org/10.36227/techrxiv.171073556.66443984/v1 |
| publication_date | 2024-03-18 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W2788633781, https://openalex.org/W3095948197, https://openalex.org/W2063789075, https://openalex.org/W2329463059, https://openalex.org/W2096945460, https://openalex.org/W6676769703, https://openalex.org/W2024046085, https://openalex.org/W6782287982, https://openalex.org/W2952120674, https://openalex.org/W6742348326, https://openalex.org/W2947380870, https://openalex.org/W2851801284, https://openalex.org/W3009883635, https://openalex.org/W2962895364, https://openalex.org/W6761909851, https://openalex.org/W1993497945, https://openalex.org/W1686810756, https://openalex.org/W6676297131, https://openalex.org/W2981188200, https://openalex.org/W1993220166, https://openalex.org/W2164341120, https://openalex.org/W1964541653, https://openalex.org/W1672851775, https://openalex.org/W2148143831, https://openalex.org/W2132791018, https://openalex.org/W1576442155, https://openalex.org/W2104933073, https://openalex.org/W2798381792, https://openalex.org/W2326683933, https://openalex.org/W3012509084, https://openalex.org/W2801320806, https://openalex.org/W2097308346, https://openalex.org/W6682644385, https://openalex.org/W6770523219, https://openalex.org/W3045801508, https://openalex.org/W6634343353, https://openalex.org/W2618154722, https://openalex.org/W6637542466, https://openalex.org/W3119069119, https://openalex.org/W3118608800, https://openalex.org/W2145607950, https://openalex.org/W2766623491, https://openalex.org/W2783165089, https://openalex.org/W3182635745, https://openalex.org/W2970941190, https://openalex.org/W2112076978, https://openalex.org/W1576445103, https://openalex.org/W2154872931, https://openalex.org/W2962933664, https://openalex.org/W4239072543, https://openalex.org/W4240176047, https://openalex.org/W1722318740, https://openalex.org/W2884561390, https://openalex.org/W2991372685, https://openalex.org/W2995197345 |
| referenced_works_count | 55 |
| abstract_inverted_index.a | 3, 76, 109, 116, 121, 130, 156, 161, 172, 224, 256 |
| abstract_inverted_index.In | 142, 167 |
| abstract_inverted_index.To | 102 |
| abstract_inverted_index.be | 221 |
| abstract_inverted_index.by | 45, 192 |
| abstract_inverted_index.in | 57, 115, 182, 198, 208, 243 |
| abstract_inverted_index.is | 2, 218 |
| abstract_inverted_index.of | 17, 59, 64, 204, 215, 249 |
| abstract_inverted_index.on | 30, 223 |
| abstract_inverted_index.or | 32 |
| abstract_inverted_index.to | 80, 124, 133, 139, 179, 220, 255 |
| abstract_inverted_index.RBS | 146, 235 |
| abstract_inverted_index.The | 35, 61, 227 |
| abstract_inverted_index.all | 81 |
| abstract_inverted_index.and | 50, 91, 129, 159, 245 |
| abstract_inverted_index.are | 27, 185, 211 |
| abstract_inverted_index.but | 74 |
| abstract_inverted_index.can | 236 |
| abstract_inverted_index.for | 6, 23, 164, 171 |
| abstract_inverted_index.its | 194 |
| abstract_inverted_index.may | 87 |
| abstract_inverted_index.per | 153 |
| abstract_inverted_index.the | 11, 42, 47, 51, 55, 65, 70, 126, 135, 140, 143, 148, 168, 175, 188, 202, 205, 213, 216, 239, 247 |
| abstract_inverted_index.via | 155, 187 |
| abstract_inverted_index.Data | 0 |
| abstract_inverted_index.This | 86 |
| abstract_inverted_index.bias | 40 |
| abstract_inverted_index.data | 136, 177, 207, 240 |
| abstract_inverted_index.each | 151, 165, 183, 199, 209 |
| abstract_inverted_index.from | 14 |
| abstract_inverted_index.many | 7 |
| abstract_inverted_index.most | 195 |
| abstract_inverted_index.that | 234 |
| abstract_inverted_index.this | 104, 106, 180 |
| abstract_inverted_index.with | 137, 251 |
| abstract_inverted_index.(RBS) | 112 |
| abstract_inverted_index.based | 29 |
| abstract_inverted_index.class | 25, 154, 184, 210 |
| abstract_inverted_index.first | 144 |
| abstract_inverted_index.given | 173 |
| abstract_inverted_index.image | 231 |
| abstract_inverted_index.issue | 242 |
| abstract_inverted_index.model | 39 |
| abstract_inverted_index.often | 68 |
| abstract_inverted_index.paper | 107 |
| abstract_inverted_index.query | 181, 217 |
| abstract_inverted_index.solve | 238 |
| abstract_inverted_index.stage | 123, 132 |
| abstract_inverted_index.tasks | 9 |
| abstract_inverted_index.terms | 58 |
| abstract_inverted_index.their | 84 |
| abstract_inverted_index.uisng | 230 |
| abstract_inverted_index.valid | 89 |
| abstract_inverted_index.where | 10 |
| abstract_inverted_index.assign | 75 |
| abstract_inverted_index.better | 257 |
| abstract_inverted_index.class. | 166, 200 |
| abstract_inverted_index.common | 4 |
| abstract_inverted_index.during | 95 |
| abstract_inverted_index.either | 28 |
| abstract_inverted_index.hybrid | 118 |
| abstract_inverted_index.ignore | 69 |
| abstract_inverted_index.images | 250 |
| abstract_inverted_index.learns | 147 |
| abstract_inverted_index.model, | 158 |
| abstract_inverted_index.number | 203 |
| abstract_inverted_index.object | 152, 197 |
| abstract_inverted_index.query, | 174 |
| abstract_inverted_index.query. | 141 |
| abstract_inverted_index.reduce | 38 |
| abstract_inverted_index.retain | 92 |
| abstract_inverted_index.revise | 54 |
| abstract_inverted_index.sample | 134 |
| abstract_inverted_index.second | 169 |
| abstract_inverted_index.stage, | 145, 170 |
| abstract_inverted_index.Because | 201 |
| abstract_inverted_index.Typical | 21 |
| abstract_inverted_index.address | 103 |
| abstract_inverted_index.between | 19, 72, 150 |
| abstract_inverted_index.classes | 44 |
| abstract_inverted_index.compile | 125 |
| abstract_inverted_index.current | 62 |
| abstract_inverted_index.dataset | 12, 79 |
| abstract_inverted_index.despite | 83 |
| abstract_inverted_index.improve | 246 |
| abstract_inverted_index.leading | 254 |
| abstract_inverted_index.offline | 189 |
| abstract_inverted_index.queries | 82 |
| abstract_inverted_index.related | 196 |
| abstract_inverted_index.respect | 138 |
| abstract_inverted_index.sampled | 78, 176, 206 |
| abstract_inverted_index.samples | 18 |
| abstract_inverted_index.suffers | 13 |
| abstract_inverted_index.thereby | 97 |
| abstract_inverted_index.towards | 41 |
| abstract_inverted_index.uniform | 77 |
| abstract_inverted_index.bi-stage | 117 |
| abstract_inverted_index.classes. | 20 |
| abstract_inverted_index.dataset. | 226 |
| abstract_inverted_index.datasets | 56, 232 |
| abstract_inverted_index.handling | 24 |
| abstract_inverted_index.locating | 193 |
| abstract_inverted_index.majority | 43 |
| abstract_inverted_index.presents | 108 |
| abstract_inverted_index.produces | 160 |
| abstract_inverted_index.sampling | 111, 127, 162, 190 |
| abstract_inverted_index.specific | 178 |
| abstract_inverted_index.strategy | 67 |
| abstract_inverted_index.training | 122 |
| abstract_inverted_index.unified, | 212 |
| abstract_inverted_index.affecting | 99 |
| abstract_inverted_index.approach, | 113 |
| abstract_inverted_index.challenge | 5 |
| abstract_inverted_index.conducted | 222 |
| abstract_inverted_index.eliminate | 88 |
| abstract_inverted_index.features, | 253 |
| abstract_inverted_index.imbalance | 1, 26, 241 |
| abstract_inverted_index.including | 120 |
| abstract_inverted_index.instances | 73, 90, 94 |
| abstract_inverted_index.modifying | 46 |
| abstract_inverted_index.retrieved | 186 |
| abstract_inverted_index.sampling, | 96 |
| abstract_inverted_index.correlated | 252 |
| abstract_inverted_index.datadriven | 66 |
| abstract_inverted_index.dictionary | 128, 163, 191 |
| abstract_inverted_index.framework, | 119 |
| abstract_inverted_index.guaranteed | 219 |
| abstract_inverted_index.irrelevant | 93 |
| abstract_inverted_index.negatively | 98 |
| abstract_inverted_index.partitions | 16 |
| abstract_inverted_index.retrieving | 131 |
| abstract_inverted_index.strategies | 37, 53 |
| abstract_inverted_index.systematic | 228 |
| abstract_inverted_index.techniques | 22 |
| abstract_inverted_index.algorithmic | 31, 36 |
| abstract_inverted_index.algorithms, | 49 |
| abstract_inverted_index.data-driven | 33, 52 |
| abstract_inverted_index.demonstrate | 233 |
| abstract_inverted_index.effectively | 237 |
| abstract_inverted_index.experiments | 229 |
| abstract_inverted_index.implemented | 114 |
| abstract_inverted_index.limitation, | 105 |
| abstract_inverted_index.recognition | 258 |
| abstract_inverted_index.resampling. | 60 |
| abstract_inverted_index.strategies. | 34 |
| abstract_inverted_index.correlations | 71, 149 |
| abstract_inverted_index.performance. | 101, 259 |
| abstract_inverted_index.class-balance | 225 |
| abstract_inverted_index.distinctions. | 85 |
| abstract_inverted_index.classification | 8, 48, 100, 214, 244 |
| abstract_inverted_index.reconstruction | 157 |
| abstract_inverted_index.representation | 248 |
| abstract_inverted_index.implementations | 63 |
| abstract_inverted_index.disproportionate | 15 |
| abstract_inverted_index.representation-based | 110 |
| cited_by_percentile_year | |
| corresponding_author_ids | https://openalex.org/A5047667818 |
| countries_distinct_count | 2 |
| institutions_distinct_count | 6 |
| corresponding_institution_ids | https://openalex.org/I16038530, https://openalex.org/I32394136, https://openalex.org/I43313876 |
| citation_normalized_percentile.value | 0.0341659 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |