A Re-Ranking Method Using K-Nearest Weighted Fusion for Person Re-Identification Article Swipe
YOU?
·
· 2025
· Open Access
·
· DOI: https://doi.org/10.5220/0013176100003905
In person re-identification, re-ranking is a crucial step to enhance the overall accuracy by refining the initial ranking of retrieved results. Previous studies have mainly focused on features from single-view images, which can cause view bias and issues like pose variation, viewpoint changes, and occlusions. Using multi-view features to present a person can help reduce view bias. In this work, we present an efficient re-ranking method that generates multi-view features by aggregating neighbors' features using K-nearest Weighted Fusion (KWF) method. Specifically, we hypothesize that features extracted from re-identification models are highly similar when representing the same identity. Thus, we select K neighboring features in an unsupervised manner to generate multi-view features. Additionally, this study explores the weight selection strategies during feature aggregation, allowing us to identify an effective strategy. Our re-ranking approach does not require model fine-tuning or extra annotations, making it applicable to large-scale datasets. We evaluate our method on the person re-identification datasets Market1501, MSMT17, and Occluded-DukeMTMC. The results show that our method significantly improves Rank@1 and mAP when re-ranking the top M candidates from the initial ranking results. Specifically, compared to the initial results, our re-ranking method achieves improvements of 9.8%/22.0% in Rank@1 on the challenging datasets: MSMT17 and Occluded-DukeMTMC, respectively. Furthermore, our approach demonstrates substantial enhancements in computational efficiency compared to other re-ranking methods.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- https://doi.org/10.5220/0013176100003905
- OA Status
- green
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4408062725
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4408062725Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.5220/0013176100003905Digital Object Identifier
- Title
-
A Re-Ranking Method Using K-Nearest Weighted Fusion for Person Re-IdentificationWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2025Year of publication
- Publication date
-
2025-01-01Full publication date if available
- Authors
-
Quang-Huy Che, Le-Chuong Nguyen, Gia-Nghia Tran, Dinh-Duy Phan, Vinh-Tiep NguyenList of authors in order
- Landing page
-
https://doi.org/10.5220/0013176100003905Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2509.04050Direct OA link when available
- Concepts
-
Ranking (information retrieval), Computer science, Identification (biology), Artificial intelligence, Fusion, Pattern recognition (psychology), Data mining, k-nearest neighbors algorithm, Machine learning, Botany, Linguistics, Biology, PhilosophyTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
0Total citation count in OpenAlex
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4408062725 |
|---|---|
| doi | https://doi.org/10.5220/0013176100003905 |
| ids.doi | https://doi.org/10.5220/0013176100003905 |
| ids.openalex | https://openalex.org/W4408062725 |
| fwci | 0.0 |
| type | article |
| title | A Re-Ranking Method Using K-Nearest Weighted Fusion for Person Re-Identification |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 90 |
| biblio.first_page | 79 |
| topics[0].id | https://openalex.org/T10331 |
| topics[0].field.id | https://openalex.org/fields/17 |
| topics[0].field.display_name | Computer Science |
| topics[0].score | 0.960099995136261 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/1707 |
| topics[0].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[0].display_name | Video Surveillance and Tracking Methods |
| topics[1].id | https://openalex.org/T11448 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9527000188827515 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1707 |
| topics[1].subfield.display_name | Computer Vision and Pattern Recognition |
| topics[1].display_name | Face recognition and analysis |
| topics[2].id | https://openalex.org/T10828 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.9448999762535095 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1711 |
| topics[2].subfield.display_name | Signal Processing |
| topics[2].display_name | Biometric Identification and Security |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C189430467 |
| concepts[0].level | 2 |
| concepts[0].score | 0.6973559856414795 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q7293293 |
| concepts[0].display_name | Ranking (information retrieval) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.6368362903594971 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C116834253 |
| concepts[2].level | 2 |
| concepts[2].score | 0.6003274917602539 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q2039217 |
| concepts[2].display_name | Identification (biology) |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.5367838740348816 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C158525013 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5363588929176331 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2593739 |
| concepts[4].display_name | Fusion |
| concepts[5].id | https://openalex.org/C153180895 |
| concepts[5].level | 2 |
| concepts[5].score | 0.46536755561828613 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q7148389 |
| concepts[5].display_name | Pattern recognition (psychology) |
| concepts[6].id | https://openalex.org/C124101348 |
| concepts[6].level | 1 |
| concepts[6].score | 0.4346766471862793 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q172491 |
| concepts[6].display_name | Data mining |
| concepts[7].id | https://openalex.org/C113238511 |
| concepts[7].level | 2 |
| concepts[7].score | 0.4116055369377136 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1071612 |
| concepts[7].display_name | k-nearest neighbors algorithm |
| concepts[8].id | https://openalex.org/C119857082 |
| concepts[8].level | 1 |
| concepts[8].score | 0.32677161693573 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q2539 |
| concepts[8].display_name | Machine learning |
| concepts[9].id | https://openalex.org/C59822182 |
| concepts[9].level | 1 |
| concepts[9].score | 0.0 |
| concepts[9].wikidata | https://www.wikidata.org/wiki/Q441 |
| concepts[9].display_name | Botany |
| concepts[10].id | https://openalex.org/C41895202 |
| concepts[10].level | 1 |
| concepts[10].score | 0.0 |
| concepts[10].wikidata | https://www.wikidata.org/wiki/Q8162 |
| concepts[10].display_name | Linguistics |
| concepts[11].id | https://openalex.org/C86803240 |
| concepts[11].level | 0 |
| concepts[11].score | 0.0 |
| concepts[11].wikidata | https://www.wikidata.org/wiki/Q420 |
| concepts[11].display_name | Biology |
| concepts[12].id | https://openalex.org/C138885662 |
| concepts[12].level | 0 |
| concepts[12].score | 0.0 |
| concepts[12].wikidata | https://www.wikidata.org/wiki/Q5891 |
| concepts[12].display_name | Philosophy |
| keywords[0].id | https://openalex.org/keywords/ranking |
| keywords[0].score | 0.6973559856414795 |
| keywords[0].display_name | Ranking (information retrieval) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.6368362903594971 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/identification |
| keywords[2].score | 0.6003274917602539 |
| keywords[2].display_name | Identification (biology) |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.5367838740348816 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/fusion |
| keywords[4].score | 0.5363588929176331 |
| keywords[4].display_name | Fusion |
| keywords[5].id | https://openalex.org/keywords/pattern-recognition |
| keywords[5].score | 0.46536755561828613 |
| keywords[5].display_name | Pattern recognition (psychology) |
| keywords[6].id | https://openalex.org/keywords/data-mining |
| keywords[6].score | 0.4346766471862793 |
| keywords[6].display_name | Data mining |
| keywords[7].id | https://openalex.org/keywords/k-nearest-neighbors-algorithm |
| keywords[7].score | 0.4116055369377136 |
| keywords[7].display_name | k-nearest neighbors algorithm |
| keywords[8].id | https://openalex.org/keywords/machine-learning |
| keywords[8].score | 0.32677161693573 |
| keywords[8].display_name | Machine learning |
| language | en |
| locations[0].id | doi:10.5220/0013176100003905 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods |
| locations[0].landing_page_url | https://doi.org/10.5220/0013176100003905 |
| locations[1].id | pmh:oai:arXiv.org:2509.04050 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | https://arxiv.org/pdf/2509.04050 |
| locations[1].version | submittedVersion |
| locations[1].raw_type | text |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | http://arxiv.org/abs/2509.04050 |
| indexed_in | arxiv, crossref |
| authorships[0].author.id | https://openalex.org/A5094236163 |
| authorships[0].author.orcid | |
| authorships[0].author.display_name | Quang-Huy Che |
| authorships[0].countries | VN |
| authorships[0].affiliations[0].raw_affiliation_string | University of Information Technology, Ho Chi Minh City, Vietnam |
| authorships[0].affiliations[1].institution_ids | https://openalex.org/I123565023 |
| authorships[0].affiliations[1].raw_affiliation_string | Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[0].institutions[0].id | https://openalex.org/I123565023 |
| authorships[0].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[0].institutions[0].country_code | VN |
| authorships[0].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Quang-Huy Che |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | University of Information Technology, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[1].author.id | https://openalex.org/A5102659620 |
| authorships[1].author.orcid | |
| authorships[1].author.display_name | Le-Chuong Nguyen |
| authorships[1].countries | VN |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[1].affiliations[0].raw_affiliation_string | Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[1].affiliations[1].raw_affiliation_string | University of Information Technology, Ho Chi Minh City, Vietnam |
| authorships[1].institutions[0].id | https://openalex.org/I123565023 |
| authorships[1].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[1].institutions[0].country_code | VN |
| authorships[1].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Le-Chuong Nguyen |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | University of Information Technology, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[2].author.id | https://openalex.org/A5113151307 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-1889-1465 |
| authorships[2].author.display_name | Gia-Nghia Tran |
| authorships[2].countries | VN |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I123565023 |
| authorships[2].affiliations[0].raw_affiliation_string | Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[2].affiliations[1].raw_affiliation_string | University of Information Technology, Ho Chi Minh City, Vietnam |
| authorships[2].institutions[0].id | https://openalex.org/I123565023 |
| authorships[2].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[2].institutions[0].country_code | VN |
| authorships[2].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Gia-Nghia Tran |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | University of Information Technology, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[3].author.id | https://openalex.org/A5020974335 |
| authorships[3].author.orcid | |
| authorships[3].author.display_name | Dinh-Duy Phan |
| authorships[3].countries | VN |
| authorships[3].affiliations[0].raw_affiliation_string | University of Information Technology, Ho Chi Minh City, Vietnam |
| authorships[3].affiliations[1].institution_ids | https://openalex.org/I123565023 |
| authorships[3].affiliations[1].raw_affiliation_string | Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[3].institutions[0].id | https://openalex.org/I123565023 |
| authorships[3].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[3].institutions[0].country_code | VN |
| authorships[3].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Dinh-Duy Phan |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University of Information Technology, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[4].author.id | https://openalex.org/A5054588832 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-4260-7874 |
| authorships[4].author.display_name | Vinh-Tiep Nguyen |
| authorships[4].countries | VN |
| authorships[4].affiliations[0].raw_affiliation_string | University of Information Technology, Ho Chi Minh City, Vietnam |
| authorships[4].affiliations[1].institution_ids | https://openalex.org/I123565023 |
| authorships[4].affiliations[1].raw_affiliation_string | Vietnam National University, Ho Chi Minh City, Vietnam |
| authorships[4].institutions[0].id | https://openalex.org/I123565023 |
| authorships[4].institutions[0].ror | https://ror.org/00waaqh38 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I123565023 |
| authorships[4].institutions[0].country_code | VN |
| authorships[4].institutions[0].display_name | Vietnam National University Ho Chi Minh City |
| authorships[4].author_position | last |
| authorships[4].raw_author_name | Vinh-Tiep Nguyen |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Information Technology, Ho Chi Minh City, Vietnam, Vietnam National University, Ho Chi Minh City, Vietnam |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2509.04050 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Re-Ranking Method Using K-Nearest Weighted Fusion for Person Re-Identification |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T10331 |
| primary_topic.field.id | https://openalex.org/fields/17 |
| primary_topic.field.display_name | Computer Science |
| primary_topic.score | 0.960099995136261 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/1707 |
| primary_topic.subfield.display_name | Computer Vision and Pattern Recognition |
| primary_topic.display_name | Video Surveillance and Tracking Methods |
| related_works | https://openalex.org/W2188500270, https://openalex.org/W2303858293, https://openalex.org/W2915512527, https://openalex.org/W51364034, https://openalex.org/W2793336762, https://openalex.org/W2091548507, https://openalex.org/W2368816706, https://openalex.org/W3159414774, https://openalex.org/W4385728102, https://openalex.org/W2378093739 |
| cited_by_count | 0 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2509.04050 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2509.04050 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | text |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2509.04050 |
| primary_location.id | doi:10.5220/0013176100003905 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | Proceedings of the 14th International Conference on Pattern Recognition Applications and Methods |
| primary_location.landing_page_url | https://doi.org/10.5220/0013176100003905 |
| publication_date | 2025-01-01 |
| publication_year | 2025 |
| referenced_works_count | 0 |
| abstract_inverted_index.K | 100 |
| abstract_inverted_index.M | 174 |
| abstract_inverted_index.a | 5, 50 |
| abstract_inverted_index.In | 0, 57 |
| abstract_inverted_index.We | 146 |
| abstract_inverted_index.an | 62, 104, 126 |
| abstract_inverted_index.by | 13, 70 |
| abstract_inverted_index.in | 103, 194, 210 |
| abstract_inverted_index.is | 4 |
| abstract_inverted_index.it | 141 |
| abstract_inverted_index.of | 18, 192 |
| abstract_inverted_index.on | 26, 150, 196 |
| abstract_inverted_index.or | 137 |
| abstract_inverted_index.to | 8, 48, 107, 124, 143, 183, 214 |
| abstract_inverted_index.us | 123 |
| abstract_inverted_index.we | 60, 81, 98 |
| abstract_inverted_index.Our | 129 |
| abstract_inverted_index.The | 159 |
| abstract_inverted_index.and | 36, 43, 157, 168, 201 |
| abstract_inverted_index.are | 89 |
| abstract_inverted_index.can | 32, 52 |
| abstract_inverted_index.mAP | 169 |
| abstract_inverted_index.not | 133 |
| abstract_inverted_index.our | 148, 163, 187, 205 |
| abstract_inverted_index.the | 10, 15, 94, 115, 151, 172, 177, 184, 197 |
| abstract_inverted_index.top | 173 |
| abstract_inverted_index.bias | 35 |
| abstract_inverted_index.does | 132 |
| abstract_inverted_index.from | 28, 86, 176 |
| abstract_inverted_index.have | 23 |
| abstract_inverted_index.help | 53 |
| abstract_inverted_index.like | 38 |
| abstract_inverted_index.pose | 39 |
| abstract_inverted_index.same | 95 |
| abstract_inverted_index.show | 161 |
| abstract_inverted_index.step | 7 |
| abstract_inverted_index.that | 66, 83, 162 |
| abstract_inverted_index.this | 58, 112 |
| abstract_inverted_index.view | 34, 55 |
| abstract_inverted_index.when | 92, 170 |
| abstract_inverted_index.(KWF) | 78 |
| abstract_inverted_index.Thus, | 97 |
| abstract_inverted_index.Using | 45 |
| abstract_inverted_index.bias. | 56 |
| abstract_inverted_index.cause | 33 |
| abstract_inverted_index.extra | 138 |
| abstract_inverted_index.model | 135 |
| abstract_inverted_index.other | 215 |
| abstract_inverted_index.study | 113 |
| abstract_inverted_index.using | 74 |
| abstract_inverted_index.which | 31 |
| abstract_inverted_index.work, | 59 |
| abstract_inverted_index.Fusion | 77 |
| abstract_inverted_index.MSMT17 | 200 |
| abstract_inverted_index.Rank@1 | 167, 195 |
| abstract_inverted_index.during | 119 |
| abstract_inverted_index.highly | 90 |
| abstract_inverted_index.issues | 37 |
| abstract_inverted_index.mainly | 24 |
| abstract_inverted_index.making | 140 |
| abstract_inverted_index.manner | 106 |
| abstract_inverted_index.method | 65, 149, 164, 189 |
| abstract_inverted_index.models | 88 |
| abstract_inverted_index.person | 1, 51, 152 |
| abstract_inverted_index.reduce | 54 |
| abstract_inverted_index.select | 99 |
| abstract_inverted_index.weight | 116 |
| abstract_inverted_index.MSMT17, | 156 |
| abstract_inverted_index.crucial | 6 |
| abstract_inverted_index.enhance | 9 |
| abstract_inverted_index.feature | 120 |
| abstract_inverted_index.focused | 25 |
| abstract_inverted_index.images, | 30 |
| abstract_inverted_index.initial | 16, 178, 185 |
| abstract_inverted_index.method. | 79 |
| abstract_inverted_index.overall | 11 |
| abstract_inverted_index.present | 49, 61 |
| abstract_inverted_index.ranking | 17, 179 |
| abstract_inverted_index.require | 134 |
| abstract_inverted_index.results | 160 |
| abstract_inverted_index.similar | 91 |
| abstract_inverted_index.studies | 22 |
| abstract_inverted_index.Previous | 21 |
| abstract_inverted_index.Weighted | 76 |
| abstract_inverted_index.accuracy | 12 |
| abstract_inverted_index.achieves | 190 |
| abstract_inverted_index.allowing | 122 |
| abstract_inverted_index.approach | 131, 206 |
| abstract_inverted_index.changes, | 42 |
| abstract_inverted_index.compared | 182, 213 |
| abstract_inverted_index.datasets | 154 |
| abstract_inverted_index.evaluate | 147 |
| abstract_inverted_index.explores | 114 |
| abstract_inverted_index.features | 27, 47, 69, 73, 84, 102 |
| abstract_inverted_index.generate | 108 |
| abstract_inverted_index.identify | 125 |
| abstract_inverted_index.improves | 166 |
| abstract_inverted_index.methods. | 217 |
| abstract_inverted_index.refining | 14 |
| abstract_inverted_index.results, | 186 |
| abstract_inverted_index.results. | 20, 180 |
| abstract_inverted_index.K-nearest | 75 |
| abstract_inverted_index.datasets. | 145 |
| abstract_inverted_index.datasets: | 199 |
| abstract_inverted_index.effective | 127 |
| abstract_inverted_index.efficient | 63 |
| abstract_inverted_index.extracted | 85 |
| abstract_inverted_index.features. | 110 |
| abstract_inverted_index.generates | 67 |
| abstract_inverted_index.identity. | 96 |
| abstract_inverted_index.retrieved | 19 |
| abstract_inverted_index.selection | 117 |
| abstract_inverted_index.strategy. | 128 |
| abstract_inverted_index.viewpoint | 41 |
| abstract_inverted_index.9.8%/22.0% | 193 |
| abstract_inverted_index.applicable | 142 |
| abstract_inverted_index.candidates | 175 |
| abstract_inverted_index.efficiency | 212 |
| abstract_inverted_index.multi-view | 46, 68, 109 |
| abstract_inverted_index.neighbors' | 72 |
| abstract_inverted_index.re-ranking | 3, 64, 130, 171, 188, 216 |
| abstract_inverted_index.strategies | 118 |
| abstract_inverted_index.variation, | 40 |
| abstract_inverted_index.Market1501, | 155 |
| abstract_inverted_index.aggregating | 71 |
| abstract_inverted_index.challenging | 198 |
| abstract_inverted_index.fine-tuning | 136 |
| abstract_inverted_index.hypothesize | 82 |
| abstract_inverted_index.large-scale | 144 |
| abstract_inverted_index.neighboring | 101 |
| abstract_inverted_index.occlusions. | 44 |
| abstract_inverted_index.single-view | 29 |
| abstract_inverted_index.substantial | 208 |
| abstract_inverted_index.Furthermore, | 204 |
| abstract_inverted_index.aggregation, | 121 |
| abstract_inverted_index.annotations, | 139 |
| abstract_inverted_index.demonstrates | 207 |
| abstract_inverted_index.enhancements | 209 |
| abstract_inverted_index.improvements | 191 |
| abstract_inverted_index.representing | 93 |
| abstract_inverted_index.unsupervised | 105 |
| abstract_inverted_index.Additionally, | 111 |
| abstract_inverted_index.Specifically, | 80, 181 |
| abstract_inverted_index.computational | 211 |
| abstract_inverted_index.respectively. | 203 |
| abstract_inverted_index.significantly | 165 |
| abstract_inverted_index.re-identification | 87, 153 |
| abstract_inverted_index.Occluded-DukeMTMC, | 202 |
| abstract_inverted_index.Occluded-DukeMTMC. | 158 |
| abstract_inverted_index.re-identification, | 2 |
| cited_by_percentile_year | |
| countries_distinct_count | 1 |
| institutions_distinct_count | 5 |
| citation_normalized_percentile.value | 0.05002812 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |