A Real-Time Machine Learning Module for Motion Artifact Detection in fNIRS Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.1109/iscas58744.2024.10557996
Functional Near-Infrared Spectroscopy (fNIRS) is a neuroimaging method which can be implemented with a wearable form factor. However, the data of fNIRS can be \naffected by motion artifact, which is conventionally processed \noffline using MATLAB-based software package via a bulky PC. \nThis study trains a Support Vector Machine (SVM) algorithm and proposes a hardware design approach based on an FPGA to achieve the first real-time fNIRS motion artifact detection. \nThe SVM hardware architecture proposed here utilizes a partially sequential–partially parallel implementation of the classification algorithm where Support Vector channels are \nconsolidated into a single oversampled channel. A high \nclassification accuracy of 97.42%, low FPGA resource utilization of 38,354 look-up tables and 6024 flip-flops with 10.92 us latency is achieved, outperforming conventional CPU SVM \nmethods. These results show that an FPGA-based fNIRS motion \nartifact detector can be exploited whilst meeting real-time and \nresource constraints that are crucial in high-performance \nreconfigurable hardware systems.
Related Topics
- Type
- article
- Language
- en
- Landing Page
- http://doi.org/10.1109/iscas58744.2024.10557996
- OA Status
- green
- Cited By
- 1
- References
- 10
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4400233214
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4400233214Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.1109/iscas58744.2024.10557996Digital Object Identifier
- Title
-
A Real-Time Machine Learning Module for Motion Artifact Detection in fNIRSWork title
- Type
-
articleOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-05-19Full publication date if available
- Authors
-
Renas Ercan, Yunjia Xia, Yunyi Zhao, Rui Loureiro, Shufan Yang, Hubin ZhaoList of authors in order
- Landing page
-
https://doi.org/10.1109/iscas58744.2024.10557996Publisher landing page
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://discovery.ucl.ac.uk/10187348/1/Final%20Renas%20ISCAS%20draft%20final%20submission%20V2%200129%20YX.pdfDirect OA link when available
- Concepts
-
Artifact (error), Computer science, Computer vision, Artificial intelligence, Motion (physics)Top concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- References (count)
-
10Number of works referenced by this work
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4400233214 |
|---|---|
| doi | https://doi.org/10.1109/iscas58744.2024.10557996 |
| ids.doi | https://doi.org/10.1109/iscas58744.2024.10557996 |
| ids.openalex | https://openalex.org/W4400233214 |
| fwci | 0.68104183 |
| type | article |
| title | A Real-Time Machine Learning Module for Motion Artifact Detection in fNIRS |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | 5 |
| biblio.first_page | 1 |
| topics[0].id | https://openalex.org/T12111 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.8583999872207642 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2209 |
| topics[0].subfield.display_name | Industrial and Manufacturing Engineering |
| topics[0].display_name | Industrial Vision Systems and Defect Detection |
| topics[1].id | https://openalex.org/T10522 |
| topics[1].field.id | https://openalex.org/fields/27 |
| topics[1].field.display_name | Medicine |
| topics[1].score | 0.8306999802589417 |
| topics[1].domain.id | https://openalex.org/domains/4 |
| topics[1].domain.display_name | Health Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/2741 |
| topics[1].subfield.display_name | Radiology, Nuclear Medicine and Imaging |
| topics[1].display_name | Medical Imaging Techniques and Applications |
| topics[2].id | https://openalex.org/T11512 |
| topics[2].field.id | https://openalex.org/fields/17 |
| topics[2].field.display_name | Computer Science |
| topics[2].score | 0.7986999750137329 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/1702 |
| topics[2].subfield.display_name | Artificial Intelligence |
| topics[2].display_name | Anomaly Detection Techniques and Applications |
| funders[0].id | https://openalex.org/F4320311904 |
| funders[0].ror | https://ror.org/029chgv08 |
| funders[0].display_name | Wellcome Trust |
| funders[1].id | https://openalex.org/F4320316851 |
| funders[1].ror | https://ror.org/043n4tt17 |
| funders[1].display_name | KT |
| funders[2].id | https://openalex.org/F4320320005 |
| funders[2].ror | https://ror.org/0526snb40 |
| funders[2].display_name | Royal Academy of Engineering |
| funders[3].id | https://openalex.org/F4320320006 |
| funders[3].ror | https://ror.org/03wnrjx87 |
| funders[3].display_name | Royal Society |
| funders[4].id | https://openalex.org/F4320334627 |
| funders[4].ror | https://ror.org/0439y7842 |
| funders[4].display_name | Engineering and Physical Sciences Research Council |
| funders[5].id | https://openalex.org/F4320334678 |
| funders[5].ror | https://ror.org/0472cxd90 |
| funders[5].display_name | European Research Council |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C2779010991 |
| concepts[0].level | 2 |
| concepts[0].score | 0.8357987999916077 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q2720909 |
| concepts[0].display_name | Artifact (error) |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.7790985107421875 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C31972630 |
| concepts[2].level | 1 |
| concepts[2].score | 0.606319785118103 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q844240 |
| concepts[2].display_name | Computer vision |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.6054359674453735 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C104114177 |
| concepts[4].level | 2 |
| concepts[4].score | 0.5692728161811829 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q79782 |
| concepts[4].display_name | Motion (physics) |
| keywords[0].id | https://openalex.org/keywords/artifact |
| keywords[0].score | 0.8357987999916077 |
| keywords[0].display_name | Artifact (error) |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.7790985107421875 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/computer-vision |
| keywords[2].score | 0.606319785118103 |
| keywords[2].display_name | Computer vision |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.6054359674453735 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/motion |
| keywords[4].score | 0.5692728161811829 |
| keywords[4].display_name | Motion (physics) |
| language | en |
| locations[0].id | doi:10.1109/iscas58744.2024.10557996 |
| locations[0].is_oa | False |
| locations[0].source | |
| locations[0].license | |
| locations[0].pdf_url | |
| locations[0].version | publishedVersion |
| locations[0].raw_type | proceedings-article |
| locations[0].license_id | |
| locations[0].is_accepted | True |
| locations[0].is_published | True |
| locations[0].raw_source_name | 2024 IEEE International Symposium on Circuits and Systems (ISCAS) |
| locations[0].landing_page_url | http://doi.org/10.1109/iscas58744.2024.10557996 |
| locations[1].id | pmh:oai:eprints.ucl.ac.uk.OAI2:10187348 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400024 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | False |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | UCL Discovery (University College London) |
| locations[1].source.host_organization | https://openalex.org/I45129253 |
| locations[1].source.host_organization_name | University College London |
| locations[1].source.host_organization_lineage | https://openalex.org/I45129253 |
| locations[1].license | |
| locations[1].pdf_url | https://discovery.ucl.ac.uk/10187348/1/Final%20Renas%20ISCAS%20draft%20final%20submission%20V2%200129%20YX.pdf |
| locations[1].version | submittedVersion |
| locations[1].raw_type | Proceedings paper |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | False |
| locations[1].raw_source_name | In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE: Singapore. (2024) (In press). |
| locations[1].landing_page_url | https://discovery.ucl.ac.uk/id/eprint/10187348/ |
| indexed_in | crossref |
| authorships[0].author.id | https://openalex.org/A5093818401 |
| authorships[0].author.orcid | https://orcid.org/0009-0008-5061-7689 |
| authorships[0].author.display_name | Renas Ercan |
| authorships[0].countries | GB |
| authorships[0].affiliations[0].institution_ids | https://openalex.org/I241749 |
| authorships[0].affiliations[0].raw_affiliation_string | (University of Cambridge) University of Cambridge,HUB of Intelligent Neuro-Engineering (HUBIN)(UCL) & Department of Physics,Cambridge,UK |
| authorships[0].institutions[0].id | https://openalex.org/I241749 |
| authorships[0].institutions[0].ror | https://ror.org/013meh722 |
| authorships[0].institutions[0].type | education |
| authorships[0].institutions[0].lineage | https://openalex.org/I241749 |
| authorships[0].institutions[0].country_code | GB |
| authorships[0].institutions[0].display_name | University of Cambridge |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Renas Ercan |
| authorships[0].is_corresponding | False |
| authorships[0].raw_affiliation_strings | (University of Cambridge) University of Cambridge,HUB of Intelligent Neuro-Engineering (HUBIN)(UCL) & Department of Physics,Cambridge,UK |
| authorships[1].author.id | https://openalex.org/A5062895413 |
| authorships[1].author.orcid | https://orcid.org/0009-0000-2768-6418 |
| authorships[1].author.display_name | Yunjia Xia |
| authorships[1].countries | GB |
| authorships[1].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[1].affiliations[0].raw_affiliation_string | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| authorships[1].institutions[0].id | https://openalex.org/I45129253 |
| authorships[1].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[1].institutions[0].type | education |
| authorships[1].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[1].institutions[0].country_code | GB |
| authorships[1].institutions[0].display_name | University College London |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Yunjia Xia |
| authorships[1].is_corresponding | False |
| authorships[1].raw_affiliation_strings | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| authorships[2].author.id | https://openalex.org/A5013349642 |
| authorships[2].author.orcid | https://orcid.org/0009-0002-7423-1007 |
| authorships[2].author.display_name | Yunyi Zhao |
| authorships[2].countries | GB |
| authorships[2].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[2].affiliations[0].raw_affiliation_string | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| authorships[2].institutions[0].id | https://openalex.org/I45129253 |
| authorships[2].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[2].institutions[0].type | education |
| authorships[2].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[2].institutions[0].country_code | GB |
| authorships[2].institutions[0].display_name | University College London |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Yunyi Zhao |
| authorships[2].is_corresponding | False |
| authorships[2].raw_affiliation_strings | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| authorships[3].author.id | https://openalex.org/A5075696028 |
| authorships[3].author.orcid | https://orcid.org/0000-0002-2224-0406 |
| authorships[3].author.display_name | Rui Loureiro |
| authorships[3].countries | GB |
| authorships[3].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[3].affiliations[0].raw_affiliation_string | University College London(UCL),Division of Surgery & Interventional Science(DSIS),London,UK |
| authorships[3].institutions[0].id | https://openalex.org/I45129253 |
| authorships[3].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[3].institutions[0].type | education |
| authorships[3].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[3].institutions[0].country_code | GB |
| authorships[3].institutions[0].display_name | University College London |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Rui Loureiro |
| authorships[3].is_corresponding | False |
| authorships[3].raw_affiliation_strings | University College London(UCL),Division of Surgery & Interventional Science(DSIS),London,UK |
| authorships[4].author.id | https://openalex.org/A5040350578 |
| authorships[4].author.orcid | https://orcid.org/0000-0003-0531-2903 |
| authorships[4].author.display_name | Shufan Yang |
| authorships[4].countries | GB |
| authorships[4].affiliations[0].institution_ids | https://openalex.org/I130828816 |
| authorships[4].affiliations[0].raw_affiliation_string | University of Leeds,Institute of Medical & Biological Engineering, School of Mechanical Engineering,Leeds,UK |
| authorships[4].institutions[0].id | https://openalex.org/I130828816 |
| authorships[4].institutions[0].ror | https://ror.org/024mrxd33 |
| authorships[4].institutions[0].type | education |
| authorships[4].institutions[0].lineage | https://openalex.org/I130828816 |
| authorships[4].institutions[0].country_code | GB |
| authorships[4].institutions[0].display_name | University of Leeds |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Shufan Yang |
| authorships[4].is_corresponding | False |
| authorships[4].raw_affiliation_strings | University of Leeds,Institute of Medical & Biological Engineering, School of Mechanical Engineering,Leeds,UK |
| authorships[5].author.id | https://openalex.org/A5016060123 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-9408-4724 |
| authorships[5].author.display_name | Hubin Zhao |
| authorships[5].countries | GB |
| authorships[5].affiliations[0].institution_ids | https://openalex.org/I45129253 |
| authorships[5].affiliations[0].raw_affiliation_string | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| authorships[5].institutions[0].id | https://openalex.org/I45129253 |
| authorships[5].institutions[0].ror | https://ror.org/02jx3x895 |
| authorships[5].institutions[0].type | education |
| authorships[5].institutions[0].lineage | https://openalex.org/I124357947, https://openalex.org/I45129253 |
| authorships[5].institutions[0].country_code | GB |
| authorships[5].institutions[0].display_name | University College London |
| authorships[5].author_position | last |
| authorships[5].raw_author_name | Hubin Zhao |
| authorships[5].is_corresponding | False |
| authorships[5].raw_affiliation_strings | DSIS University College London(UCL),HUB of Intelligent Neuro-engineering (HUBIN),London,UK |
| has_content.pdf | True |
| has_content.grobid_xml | True |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://discovery.ucl.ac.uk/10187348/1/Final%20Renas%20ISCAS%20draft%20final%20submission%20V2%200129%20YX.pdf |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2025-10-10T00:00:00 |
| display_name | A Real-Time Machine Learning Module for Motion Artifact Detection in fNIRS |
| has_fulltext | True |
| is_retracted | False |
| updated_date | 2025-11-06T03:46:38.306776 |
| primary_topic.id | https://openalex.org/T12111 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.8583999872207642 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2209 |
| primary_topic.subfield.display_name | Industrial and Manufacturing Engineering |
| primary_topic.display_name | Industrial Vision Systems and Defect Detection |
| related_works | https://openalex.org/W2058170566, https://openalex.org/W2755342338, https://openalex.org/W2772917594, https://openalex.org/W2775347418, https://openalex.org/W2166024367, https://openalex.org/W3116076068, https://openalex.org/W2229312674, https://openalex.org/W2951359407, https://openalex.org/W2079911747, https://openalex.org/W1969923398 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:eprints.ucl.ac.uk.OAI2:10187348 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400024 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | False |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | UCL Discovery (University College London) |
| best_oa_location.source.host_organization | https://openalex.org/I45129253 |
| best_oa_location.source.host_organization_name | University College London |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I45129253 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://discovery.ucl.ac.uk/10187348/1/Final%20Renas%20ISCAS%20draft%20final%20submission%20V2%200129%20YX.pdf |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | Proceedings paper |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | In: 2024 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE: Singapore. (2024) (In press). |
| best_oa_location.landing_page_url | https://discovery.ucl.ac.uk/id/eprint/10187348/ |
| primary_location.id | doi:10.1109/iscas58744.2024.10557996 |
| primary_location.is_oa | False |
| primary_location.source | |
| primary_location.license | |
| primary_location.pdf_url | |
| primary_location.version | publishedVersion |
| primary_location.raw_type | proceedings-article |
| primary_location.license_id | |
| primary_location.is_accepted | True |
| primary_location.is_published | True |
| primary_location.raw_source_name | 2024 IEEE International Symposium on Circuits and Systems (ISCAS) |
| primary_location.landing_page_url | http://doi.org/10.1109/iscas58744.2024.10557996 |
| publication_date | 2024-05-19 |
| publication_year | 2024 |
| referenced_works | https://openalex.org/W4388554780, https://openalex.org/W3185976047, https://openalex.org/W2165201535, https://openalex.org/W4224252572, https://openalex.org/W2089589969, https://openalex.org/W2091337500, https://openalex.org/W2047284304, https://openalex.org/W3019985288, https://openalex.org/W2029802912, https://openalex.org/W4226048096 |
| referenced_works_count | 10 |
| abstract_inverted_index.A | 91 |
| abstract_inverted_index.a | 5, 13, 36, 41, 49, 72, 87 |
| abstract_inverted_index.an | 55, 121 |
| abstract_inverted_index.be | 10, 127 |
| abstract_inverted_index.by | 24 |
| abstract_inverted_index.in | 137 |
| abstract_inverted_index.is | 4, 28, 111 |
| abstract_inverted_index.of | 20, 77, 94, 100 |
| abstract_inverted_index.on | 54 |
| abstract_inverted_index.to | 57 |
| abstract_inverted_index.us | 109 |
| abstract_inverted_index.CPU | 115 |
| abstract_inverted_index.SVM | 66 |
| abstract_inverted_index.and | 47, 104 |
| abstract_inverted_index.are | 135 |
| abstract_inverted_index.can | 9, 22, 126 |
| abstract_inverted_index.low | 96 |
| abstract_inverted_index.the | 18, 59, 78 |
| abstract_inverted_index.via | 35 |
| abstract_inverted_index.6024 | 105 |
| abstract_inverted_index.FPGA | 56, 97 |
| abstract_inverted_index.data | 19 |
| abstract_inverted_index.form | 15 |
| abstract_inverted_index.here | 70 |
| abstract_inverted_index.into | 86 |
| abstract_inverted_index.show | 119 |
| abstract_inverted_index.that | 120, 134 |
| abstract_inverted_index.with | 12, 107 |
| abstract_inverted_index.(SVM) | 45 |
| abstract_inverted_index.10.92 | 108 |
| abstract_inverted_index.These | 117 |
| abstract_inverted_index.based | 53 |
| abstract_inverted_index.bulky | 37 |
| abstract_inverted_index.fNIRS | 21, 62, 123 |
| abstract_inverted_index.first | 60 |
| abstract_inverted_index.study | 39 |
| abstract_inverted_index.using | 31 |
| abstract_inverted_index.where | 81 |
| abstract_inverted_index.which | 8, 27 |
| abstract_inverted_index.38,354 | 101 |
| abstract_inverted_index.Vector | 43, 83 |
| abstract_inverted_index.design | 51 |
| abstract_inverted_index.method | 7 |
| abstract_inverted_index.motion | 25, 63 |
| abstract_inverted_index.single | 88 |
| abstract_inverted_index.tables | 103 |
| abstract_inverted_index.trains | 40 |
| abstract_inverted_index.whilst | 129 |
| abstract_inverted_index.(fNIRS) | 3 |
| abstract_inverted_index.97.42%, | 95 |
| abstract_inverted_index.Machine | 44 |
| abstract_inverted_index.Support | 42, 82 |
| abstract_inverted_index.achieve | 58 |
| abstract_inverted_index.crucial | 136 |
| abstract_inverted_index.factor. | 16 |
| abstract_inverted_index.latency | 110 |
| abstract_inverted_index.look-up | 102 |
| abstract_inverted_index.meeting | 130 |
| abstract_inverted_index.package | 34 |
| abstract_inverted_index.results | 118 |
| abstract_inverted_index.However, | 17 |
| abstract_inverted_index.accuracy | 93 |
| abstract_inverted_index.approach | 52 |
| abstract_inverted_index.artifact | 64 |
| abstract_inverted_index.channel. | 90 |
| abstract_inverted_index.channels | 84 |
| abstract_inverted_index.detector | 125 |
| abstract_inverted_index.hardware | 50, 67, 139 |
| abstract_inverted_index.parallel | 75 |
| abstract_inverted_index.proposed | 69 |
| abstract_inverted_index.proposes | 48 |
| abstract_inverted_index.resource | 98 |
| abstract_inverted_index.software | 33 |
| abstract_inverted_index.systems. | 140 |
| abstract_inverted_index.utilizes | 71 |
| abstract_inverted_index.wearable | 14 |
| abstract_inverted_index.achieved, | 112 |
| abstract_inverted_index.algorithm | 46, 80 |
| abstract_inverted_index.artifact, | 26 |
| abstract_inverted_index.exploited | 128 |
| abstract_inverted_index.partially | 73 |
| abstract_inverted_index.real-time | 61, 131 |
| abstract_inverted_index.FPGA-based | 122 |
| abstract_inverted_index.Functional | 0 |
| abstract_inverted_index.flip-flops | 106 |
| abstract_inverted_index.constraints | 133 |
| abstract_inverted_index.implemented | 11 |
| abstract_inverted_index.oversampled | 89 |
| abstract_inverted_index.utilization | 99 |
| abstract_inverted_index.MATLAB-based | 32 |
| abstract_inverted_index.Spectroscopy | 2 |
| abstract_inverted_index.architecture | 68 |
| abstract_inverted_index.conventional | 114 |
| abstract_inverted_index.neuroimaging | 6 |
| abstract_inverted_index.Near-Infrared | 1 |
| abstract_inverted_index.outperforming | 113 |
| abstract_inverted_index.PC. \nThis | 38 |
| abstract_inverted_index.classification | 79 |
| abstract_inverted_index.conventionally | 29 |
| abstract_inverted_index.implementation | 76 |
| abstract_inverted_index.be \naffected | 23 |
| abstract_inverted_index.SVM \nmethods. | 116 |
| abstract_inverted_index.and \nresource | 132 |
| abstract_inverted_index.detection. \nThe | 65 |
| abstract_inverted_index.motion \nartifact | 124 |
| abstract_inverted_index.are \nconsolidated | 85 |
| abstract_inverted_index.sequential–partially | 74 |
| abstract_inverted_index.processed \noffline | 30 |
| abstract_inverted_index.high \nclassification | 92 |
| abstract_inverted_index.high-performance \nreconfigurable | 138 |
| cited_by_percentile_year.max | 95 |
| cited_by_percentile_year.min | 91 |
| countries_distinct_count | 1 |
| institutions_distinct_count | 6 |
| citation_normalized_percentile.value | 0.66188548 |
| citation_normalized_percentile.is_in_top_1_percent | False |
| citation_normalized_percentile.is_in_top_10_percent | False |