A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI Article Swipe
YOU?
·
· 2024
· Open Access
·
· DOI: https://doi.org/10.48550/arxiv.2410.15296
Neuro-symbolic artificial intelligence (AI) excels at learning from noisy and generalized patterns, conducting logical inferences, and providing interpretable reasoning. Comprising a 'neuro' component for feature extraction and a 'symbolic' component for decision-making, neuro-symbolic AI has yet to fully benefit from efficient hardware accelerators. Additionally, current hardware struggles to accommodate applications requiring dynamic resource allocation between these two components. To address these challenges-and mitigate the typical data-transfer bottleneck of classical Von Neumann architectures-we propose a ferroelectric charge-domain compute-in-memory (CiM) array as the foundational processing element for neuro-symbolic AI. This array seamlessly handles both the critical multiply-accumulate (MAC) operations of the 'neuro' workload and the parallel associative search operations of the 'symbolic' workload. To enable this approach, we introduce an innovative 1FeFET-1C cell, combining a ferroelectric field-effect transistor (FeFET) with a capacitor. This design, overcomes the destructive sensing limitations of DRAM in CiM applications, while capable of capitalizing decades of DRAM expertise with a similar cell structure as DRAM, achieves high immunity against FeFET variation-crucial for neuro-symbolic AI-and demonstrates superior energy efficiency. The functionalities of our design have been successfully validated through SPICE simulations and prototype fabrication and testing. Our hardware platform has been benchmarked in executing typical neuro-symbolic AI reasoning tasks, showing over 2x improvement in latency and 1000x improvement in energy efficiency compared to GPU-based implementations.
Related Topics
- Type
- preprint
- Language
- en
- Landing Page
- http://arxiv.org/abs/2410.15296
- https://arxiv.org/pdf/2410.15296
- OA Status
- green
- Cited By
- 1
- Related Works
- 10
- OpenAlex ID
- https://openalex.org/W4404088543
Raw OpenAlex JSON
- OpenAlex ID
-
https://openalex.org/W4404088543Canonical identifier for this work in OpenAlex
- DOI
-
https://doi.org/10.48550/arxiv.2410.15296Digital Object Identifier
- Title
-
A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AIWork title
- Type
-
preprintOpenAlex work type
- Language
-
enPrimary language
- Publication year
-
2024Year of publication
- Publication date
-
2024-10-20Full publication date if available
- Authors
-
Xunzhao Yin, Hamza Errahmouni Barkam, Franz Mȕller, Yuxiao Jiang, Mohsen Imani, Sukhrob Abdulazhanov, Alptekin Vardar, Nellie Laleni, Zijian Zhao, Jiahui Duan, Zhiguo Shi, Siddharth Joshi, Michael Niemier, Xiaobo Sharon Hu, Cheng Zhuo, Thomas Kämpfe, Kai NiList of authors in order
- Landing page
-
https://arxiv.org/abs/2410.15296Publisher landing page
- PDF URL
-
https://arxiv.org/pdf/2410.15296Direct link to full text PDF
- Open access
-
YesWhether a free full text is available
- OA status
-
greenOpen access status per OpenAlex
- OA URL
-
https://arxiv.org/pdf/2410.15296Direct OA link when available
- Concepts
-
Dynamic random-access memory, Computer science, Cognitive science, Artificial intelligence, Theoretical computer science, Parallel computing, Psychology, Semiconductor memory, Operating systemTop concepts (fields/topics) attached by OpenAlex
- Cited by
-
1Total citation count in OpenAlex
- Citations by year (recent)
-
2025: 1Per-year citation counts (last 5 years)
- Related works (count)
-
10Other works algorithmically related by OpenAlex
Full payload
| id | https://openalex.org/W4404088543 |
|---|---|
| doi | https://doi.org/10.48550/arxiv.2410.15296 |
| ids.doi | https://doi.org/10.48550/arxiv.2410.15296 |
| ids.openalex | https://openalex.org/W4404088543 |
| fwci | |
| type | preprint |
| title | A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI |
| biblio.issue | |
| biblio.volume | |
| biblio.last_page | |
| biblio.first_page | |
| topics[0].id | https://openalex.org/T10502 |
| topics[0].field.id | https://openalex.org/fields/22 |
| topics[0].field.display_name | Engineering |
| topics[0].score | 0.9968000054359436 |
| topics[0].domain.id | https://openalex.org/domains/3 |
| topics[0].domain.display_name | Physical Sciences |
| topics[0].subfield.id | https://openalex.org/subfields/2208 |
| topics[0].subfield.display_name | Electrical and Electronic Engineering |
| topics[0].display_name | Advanced Memory and Neural Computing |
| topics[1].id | https://openalex.org/T10320 |
| topics[1].field.id | https://openalex.org/fields/17 |
| topics[1].field.display_name | Computer Science |
| topics[1].score | 0.9790999889373779 |
| topics[1].domain.id | https://openalex.org/domains/3 |
| topics[1].domain.display_name | Physical Sciences |
| topics[1].subfield.id | https://openalex.org/subfields/1702 |
| topics[1].subfield.display_name | Artificial Intelligence |
| topics[1].display_name | Neural Networks and Applications |
| topics[2].id | https://openalex.org/T12808 |
| topics[2].field.id | https://openalex.org/fields/22 |
| topics[2].field.display_name | Engineering |
| topics[2].score | 0.9710999727249146 |
| topics[2].domain.id | https://openalex.org/domains/3 |
| topics[2].domain.display_name | Physical Sciences |
| topics[2].subfield.id | https://openalex.org/subfields/2208 |
| topics[2].subfield.display_name | Electrical and Electronic Engineering |
| topics[2].display_name | Ferroelectric and Negative Capacitance Devices |
| is_xpac | False |
| apc_list | |
| apc_paid | |
| concepts[0].id | https://openalex.org/C118702147 |
| concepts[0].level | 3 |
| concepts[0].score | 0.658493161201477 |
| concepts[0].wikidata | https://www.wikidata.org/wiki/Q189396 |
| concepts[0].display_name | Dynamic random-access memory |
| concepts[1].id | https://openalex.org/C41008148 |
| concepts[1].level | 0 |
| concepts[1].score | 0.5672147274017334 |
| concepts[1].wikidata | https://www.wikidata.org/wiki/Q21198 |
| concepts[1].display_name | Computer science |
| concepts[2].id | https://openalex.org/C188147891 |
| concepts[2].level | 1 |
| concepts[2].score | 0.5361478328704834 |
| concepts[2].wikidata | https://www.wikidata.org/wiki/Q147638 |
| concepts[2].display_name | Cognitive science |
| concepts[3].id | https://openalex.org/C154945302 |
| concepts[3].level | 1 |
| concepts[3].score | 0.44951629638671875 |
| concepts[3].wikidata | https://www.wikidata.org/wiki/Q11660 |
| concepts[3].display_name | Artificial intelligence |
| concepts[4].id | https://openalex.org/C80444323 |
| concepts[4].level | 1 |
| concepts[4].score | 0.3551484942436218 |
| concepts[4].wikidata | https://www.wikidata.org/wiki/Q2878974 |
| concepts[4].display_name | Theoretical computer science |
| concepts[5].id | https://openalex.org/C173608175 |
| concepts[5].level | 1 |
| concepts[5].score | 0.33245325088500977 |
| concepts[5].wikidata | https://www.wikidata.org/wiki/Q232661 |
| concepts[5].display_name | Parallel computing |
| concepts[6].id | https://openalex.org/C15744967 |
| concepts[6].level | 0 |
| concepts[6].score | 0.2480085790157318 |
| concepts[6].wikidata | https://www.wikidata.org/wiki/Q9418 |
| concepts[6].display_name | Psychology |
| concepts[7].id | https://openalex.org/C98986596 |
| concepts[7].level | 2 |
| concepts[7].score | 0.2048656940460205 |
| concepts[7].wikidata | https://www.wikidata.org/wiki/Q1143031 |
| concepts[7].display_name | Semiconductor memory |
| concepts[8].id | https://openalex.org/C111919701 |
| concepts[8].level | 1 |
| concepts[8].score | 0.06692266464233398 |
| concepts[8].wikidata | https://www.wikidata.org/wiki/Q9135 |
| concepts[8].display_name | Operating system |
| keywords[0].id | https://openalex.org/keywords/dynamic-random-access-memory |
| keywords[0].score | 0.658493161201477 |
| keywords[0].display_name | Dynamic random-access memory |
| keywords[1].id | https://openalex.org/keywords/computer-science |
| keywords[1].score | 0.5672147274017334 |
| keywords[1].display_name | Computer science |
| keywords[2].id | https://openalex.org/keywords/cognitive-science |
| keywords[2].score | 0.5361478328704834 |
| keywords[2].display_name | Cognitive science |
| keywords[3].id | https://openalex.org/keywords/artificial-intelligence |
| keywords[3].score | 0.44951629638671875 |
| keywords[3].display_name | Artificial intelligence |
| keywords[4].id | https://openalex.org/keywords/theoretical-computer-science |
| keywords[4].score | 0.3551484942436218 |
| keywords[4].display_name | Theoretical computer science |
| keywords[5].id | https://openalex.org/keywords/parallel-computing |
| keywords[5].score | 0.33245325088500977 |
| keywords[5].display_name | Parallel computing |
| keywords[6].id | https://openalex.org/keywords/psychology |
| keywords[6].score | 0.2480085790157318 |
| keywords[6].display_name | Psychology |
| keywords[7].id | https://openalex.org/keywords/semiconductor-memory |
| keywords[7].score | 0.2048656940460205 |
| keywords[7].display_name | Semiconductor memory |
| keywords[8].id | https://openalex.org/keywords/operating-system |
| keywords[8].score | 0.06692266464233398 |
| keywords[8].display_name | Operating system |
| language | en |
| locations[0].id | pmh:oai:arXiv.org:2410.15296 |
| locations[0].is_oa | True |
| locations[0].source.id | https://openalex.org/S4306400194 |
| locations[0].source.issn | |
| locations[0].source.type | repository |
| locations[0].source.is_oa | True |
| locations[0].source.issn_l | |
| locations[0].source.is_core | False |
| locations[0].source.is_in_doaj | False |
| locations[0].source.display_name | arXiv (Cornell University) |
| locations[0].source.host_organization | https://openalex.org/I205783295 |
| locations[0].source.host_organization_name | Cornell University |
| locations[0].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[0].license | |
| locations[0].pdf_url | https://arxiv.org/pdf/2410.15296 |
| locations[0].version | submittedVersion |
| locations[0].raw_type | |
| locations[0].license_id | |
| locations[0].is_accepted | False |
| locations[0].is_published | False |
| locations[0].raw_source_name | |
| locations[0].landing_page_url | http://arxiv.org/abs/2410.15296 |
| locations[1].id | doi:10.48550/arxiv.2410.15296 |
| locations[1].is_oa | True |
| locations[1].source.id | https://openalex.org/S4306400194 |
| locations[1].source.issn | |
| locations[1].source.type | repository |
| locations[1].source.is_oa | True |
| locations[1].source.issn_l | |
| locations[1].source.is_core | False |
| locations[1].source.is_in_doaj | False |
| locations[1].source.display_name | arXiv (Cornell University) |
| locations[1].source.host_organization | https://openalex.org/I205783295 |
| locations[1].source.host_organization_name | Cornell University |
| locations[1].source.host_organization_lineage | https://openalex.org/I205783295 |
| locations[1].license | |
| locations[1].pdf_url | |
| locations[1].version | |
| locations[1].raw_type | article |
| locations[1].license_id | |
| locations[1].is_accepted | False |
| locations[1].is_published | |
| locations[1].raw_source_name | |
| locations[1].landing_page_url | https://doi.org/10.48550/arxiv.2410.15296 |
| indexed_in | arxiv, datacite |
| authorships[0].author.id | https://openalex.org/A5071383109 |
| authorships[0].author.orcid | https://orcid.org/0000-0003-4656-9545 |
| authorships[0].author.display_name | Xunzhao Yin |
| authorships[0].author_position | first |
| authorships[0].raw_author_name | Yin, Xunzhao |
| authorships[0].is_corresponding | False |
| authorships[1].author.id | https://openalex.org/A5023141859 |
| authorships[1].author.orcid | https://orcid.org/0000-0002-0500-4647 |
| authorships[1].author.display_name | Hamza Errahmouni Barkam |
| authorships[1].author_position | middle |
| authorships[1].raw_author_name | Barkam, Hamza Errahmouni |
| authorships[1].is_corresponding | False |
| authorships[2].author.id | https://openalex.org/A5002630852 |
| authorships[2].author.orcid | https://orcid.org/0000-0002-6564-9121 |
| authorships[2].author.display_name | Franz Mȕller |
| authorships[2].author_position | middle |
| authorships[2].raw_author_name | Müller, Franz |
| authorships[2].is_corresponding | False |
| authorships[3].author.id | https://openalex.org/A5102113663 |
| authorships[3].author.orcid | https://orcid.org/0009-0006-0425-291X |
| authorships[3].author.display_name | Yuxiao Jiang |
| authorships[3].author_position | middle |
| authorships[3].raw_author_name | Jiang, Yuxiao |
| authorships[3].is_corresponding | False |
| authorships[4].author.id | https://openalex.org/A5046141850 |
| authorships[4].author.orcid | https://orcid.org/0000-0002-7934-0301 |
| authorships[4].author.display_name | Mohsen Imani |
| authorships[4].author_position | middle |
| authorships[4].raw_author_name | Imani, Mohsen |
| authorships[4].is_corresponding | False |
| authorships[5].author.id | https://openalex.org/A5004046006 |
| authorships[5].author.orcid | https://orcid.org/0000-0001-7305-2811 |
| authorships[5].author.display_name | Sukhrob Abdulazhanov |
| authorships[5].author_position | middle |
| authorships[5].raw_author_name | Abdulazhanov, Sukhrob |
| authorships[5].is_corresponding | False |
| authorships[6].author.id | https://openalex.org/A5066721881 |
| authorships[6].author.orcid | https://orcid.org/0009-0004-0629-0325 |
| authorships[6].author.display_name | Alptekin Vardar |
| authorships[6].author_position | middle |
| authorships[6].raw_author_name | Vardar, Alptekin |
| authorships[6].is_corresponding | False |
| authorships[7].author.id | https://openalex.org/A5081186426 |
| authorships[7].author.orcid | https://orcid.org/0000-0002-2445-9989 |
| authorships[7].author.display_name | Nellie Laleni |
| authorships[7].author_position | middle |
| authorships[7].raw_author_name | Laleni, Nellie |
| authorships[7].is_corresponding | False |
| authorships[8].author.id | https://openalex.org/A5049877206 |
| authorships[8].author.orcid | https://orcid.org/0000-0001-5191-6447 |
| authorships[8].author.display_name | Zijian Zhao |
| authorships[8].author_position | middle |
| authorships[8].raw_author_name | Zhao, Zijian |
| authorships[8].is_corresponding | False |
| authorships[9].author.id | https://openalex.org/A5040023626 |
| authorships[9].author.orcid | https://orcid.org/0000-0003-1097-5170 |
| authorships[9].author.display_name | Jiahui Duan |
| authorships[9].author_position | middle |
| authorships[9].raw_author_name | Duan, Jiahui |
| authorships[9].is_corresponding | False |
| authorships[10].author.id | https://openalex.org/A5041940889 |
| authorships[10].author.orcid | https://orcid.org/0000-0001-9160-048X |
| authorships[10].author.display_name | Zhiguo Shi |
| authorships[10].author_position | middle |
| authorships[10].raw_author_name | Shi, Zhiguo |
| authorships[10].is_corresponding | False |
| authorships[11].author.id | https://openalex.org/A5062849115 |
| authorships[11].author.orcid | https://orcid.org/0000-0002-9201-9678 |
| authorships[11].author.display_name | Siddharth Joshi |
| authorships[11].author_position | middle |
| authorships[11].raw_author_name | Joshi, Siddharth |
| authorships[11].is_corresponding | False |
| authorships[12].author.id | https://openalex.org/A5003032564 |
| authorships[12].author.orcid | https://orcid.org/0000-0001-7776-4306 |
| authorships[12].author.display_name | Michael Niemier |
| authorships[12].author_position | middle |
| authorships[12].raw_author_name | Niemier, Michael |
| authorships[12].is_corresponding | False |
| authorships[13].author.id | https://openalex.org/A5100600905 |
| authorships[13].author.orcid | https://orcid.org/0000-0002-6636-9738 |
| authorships[13].author.display_name | Xiaobo Sharon Hu |
| authorships[13].author_position | middle |
| authorships[13].raw_author_name | Hu, Xiaobo Sharon |
| authorships[13].is_corresponding | False |
| authorships[14].author.id | https://openalex.org/A5103980638 |
| authorships[14].author.orcid | |
| authorships[14].author.display_name | Cheng Zhuo |
| authorships[14].author_position | middle |
| authorships[14].raw_author_name | Zhuo, Cheng |
| authorships[14].is_corresponding | False |
| authorships[15].author.id | https://openalex.org/A5079324627 |
| authorships[15].author.orcid | https://orcid.org/0000-0002-4672-8676 |
| authorships[15].author.display_name | Thomas Kämpfe |
| authorships[15].author_position | middle |
| authorships[15].raw_author_name | Kämpfe, Thomas |
| authorships[15].is_corresponding | False |
| authorships[16].author.id | https://openalex.org/A5112494107 |
| authorships[16].author.orcid | |
| authorships[16].author.display_name | Kai Ni |
| authorships[16].author_position | last |
| authorships[16].raw_author_name | Ni, Kai |
| authorships[16].is_corresponding | False |
| has_content.pdf | False |
| has_content.grobid_xml | False |
| is_paratext | False |
| open_access.is_oa | True |
| open_access.oa_url | https://arxiv.org/pdf/2410.15296 |
| open_access.oa_status | green |
| open_access.any_repository_has_fulltext | False |
| created_date | 2024-11-06T00:00:00 |
| display_name | A Remedy to Compute-in-Memory with Dynamic Random Access Memory: 1FeFET-1C Technology for Neuro-Symbolic AI |
| has_fulltext | False |
| is_retracted | False |
| updated_date | 2025-11-06T06:51:31.235846 |
| primary_topic.id | https://openalex.org/T10502 |
| primary_topic.field.id | https://openalex.org/fields/22 |
| primary_topic.field.display_name | Engineering |
| primary_topic.score | 0.9968000054359436 |
| primary_topic.domain.id | https://openalex.org/domains/3 |
| primary_topic.domain.display_name | Physical Sciences |
| primary_topic.subfield.id | https://openalex.org/subfields/2208 |
| primary_topic.subfield.display_name | Electrical and Electronic Engineering |
| primary_topic.display_name | Advanced Memory and Neural Computing |
| related_works | https://openalex.org/W2518930778, https://openalex.org/W2115140794, https://openalex.org/W2041120224, https://openalex.org/W1504320321, https://openalex.org/W2067902980, https://openalex.org/W2548529098, https://openalex.org/W3188962172, https://openalex.org/W4312275919, https://openalex.org/W2772917594, https://openalex.org/W2338293335 |
| cited_by_count | 1 |
| counts_by_year[0].year | 2025 |
| counts_by_year[0].cited_by_count | 1 |
| locations_count | 2 |
| best_oa_location.id | pmh:oai:arXiv.org:2410.15296 |
| best_oa_location.is_oa | True |
| best_oa_location.source.id | https://openalex.org/S4306400194 |
| best_oa_location.source.issn | |
| best_oa_location.source.type | repository |
| best_oa_location.source.is_oa | True |
| best_oa_location.source.issn_l | |
| best_oa_location.source.is_core | False |
| best_oa_location.source.is_in_doaj | False |
| best_oa_location.source.display_name | arXiv (Cornell University) |
| best_oa_location.source.host_organization | https://openalex.org/I205783295 |
| best_oa_location.source.host_organization_name | Cornell University |
| best_oa_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| best_oa_location.license | |
| best_oa_location.pdf_url | https://arxiv.org/pdf/2410.15296 |
| best_oa_location.version | submittedVersion |
| best_oa_location.raw_type | |
| best_oa_location.license_id | |
| best_oa_location.is_accepted | False |
| best_oa_location.is_published | False |
| best_oa_location.raw_source_name | |
| best_oa_location.landing_page_url | http://arxiv.org/abs/2410.15296 |
| primary_location.id | pmh:oai:arXiv.org:2410.15296 |
| primary_location.is_oa | True |
| primary_location.source.id | https://openalex.org/S4306400194 |
| primary_location.source.issn | |
| primary_location.source.type | repository |
| primary_location.source.is_oa | True |
| primary_location.source.issn_l | |
| primary_location.source.is_core | False |
| primary_location.source.is_in_doaj | False |
| primary_location.source.display_name | arXiv (Cornell University) |
| primary_location.source.host_organization | https://openalex.org/I205783295 |
| primary_location.source.host_organization_name | Cornell University |
| primary_location.source.host_organization_lineage | https://openalex.org/I205783295 |
| primary_location.license | |
| primary_location.pdf_url | https://arxiv.org/pdf/2410.15296 |
| primary_location.version | submittedVersion |
| primary_location.raw_type | |
| primary_location.license_id | |
| primary_location.is_accepted | False |
| primary_location.is_published | False |
| primary_location.raw_source_name | |
| primary_location.landing_page_url | http://arxiv.org/abs/2410.15296 |
| publication_date | 2024-10-20 |
| publication_year | 2024 |
| referenced_works_count | 0 |
| abstract_inverted_index.a | 20, 27, 73, 122, 128, 151 |
| abstract_inverted_index.2x | 202 |
| abstract_inverted_index.AI | 33, 197 |
| abstract_inverted_index.To | 58, 111 |
| abstract_inverted_index.an | 117 |
| abstract_inverted_index.as | 79, 155 |
| abstract_inverted_index.at | 5 |
| abstract_inverted_index.in | 139, 193, 204, 209 |
| abstract_inverted_index.of | 67, 97, 107, 137, 144, 147, 172 |
| abstract_inverted_index.to | 36, 47, 213 |
| abstract_inverted_index.we | 115 |
| abstract_inverted_index.AI. | 86 |
| abstract_inverted_index.CiM | 140 |
| abstract_inverted_index.Our | 187 |
| abstract_inverted_index.The | 170 |
| abstract_inverted_index.Von | 69 |
| abstract_inverted_index.and | 9, 15, 26, 101, 182, 185, 206 |
| abstract_inverted_index.for | 23, 30, 84, 163 |
| abstract_inverted_index.has | 34, 190 |
| abstract_inverted_index.our | 173 |
| abstract_inverted_index.the | 63, 80, 92, 98, 102, 108, 133 |
| abstract_inverted_index.two | 56 |
| abstract_inverted_index.yet | 35 |
| abstract_inverted_index.(AI) | 3 |
| abstract_inverted_index.DRAM | 138, 148 |
| abstract_inverted_index.This | 87, 130 |
| abstract_inverted_index.been | 176, 191 |
| abstract_inverted_index.both | 91 |
| abstract_inverted_index.cell | 153 |
| abstract_inverted_index.from | 7, 39 |
| abstract_inverted_index.have | 175 |
| abstract_inverted_index.high | 158 |
| abstract_inverted_index.over | 201 |
| abstract_inverted_index.this | 113 |
| abstract_inverted_index.with | 127, 150 |
| abstract_inverted_index.(CiM) | 77 |
| abstract_inverted_index.(MAC) | 95 |
| abstract_inverted_index.1000x | 207 |
| abstract_inverted_index.DRAM, | 156 |
| abstract_inverted_index.FeFET | 161 |
| abstract_inverted_index.SPICE | 180 |
| abstract_inverted_index.array | 78, 88 |
| abstract_inverted_index.cell, | 120 |
| abstract_inverted_index.fully | 37 |
| abstract_inverted_index.noisy | 8 |
| abstract_inverted_index.these | 55, 60 |
| abstract_inverted_index.while | 142 |
| abstract_inverted_index.AI-and | 165 |
| abstract_inverted_index.design | 174 |
| abstract_inverted_index.enable | 112 |
| abstract_inverted_index.energy | 168, 210 |
| abstract_inverted_index.excels | 4 |
| abstract_inverted_index.search | 105 |
| abstract_inverted_index.tasks, | 199 |
| abstract_inverted_index.'neuro' | 21, 99 |
| abstract_inverted_index.(FeFET) | 126 |
| abstract_inverted_index.Neumann | 70 |
| abstract_inverted_index.address | 59 |
| abstract_inverted_index.against | 160 |
| abstract_inverted_index.benefit | 38 |
| abstract_inverted_index.between | 54 |
| abstract_inverted_index.capable | 143 |
| abstract_inverted_index.current | 44 |
| abstract_inverted_index.decades | 146 |
| abstract_inverted_index.design, | 131 |
| abstract_inverted_index.dynamic | 51 |
| abstract_inverted_index.element | 83 |
| abstract_inverted_index.feature | 24 |
| abstract_inverted_index.handles | 90 |
| abstract_inverted_index.latency | 205 |
| abstract_inverted_index.logical | 13 |
| abstract_inverted_index.propose | 72 |
| abstract_inverted_index.sensing | 135 |
| abstract_inverted_index.showing | 200 |
| abstract_inverted_index.similar | 152 |
| abstract_inverted_index.through | 179 |
| abstract_inverted_index.typical | 64, 195 |
| abstract_inverted_index.achieves | 157 |
| abstract_inverted_index.compared | 212 |
| abstract_inverted_index.critical | 93 |
| abstract_inverted_index.hardware | 41, 45, 188 |
| abstract_inverted_index.immunity | 159 |
| abstract_inverted_index.learning | 6 |
| abstract_inverted_index.mitigate | 62 |
| abstract_inverted_index.parallel | 103 |
| abstract_inverted_index.platform | 189 |
| abstract_inverted_index.resource | 52 |
| abstract_inverted_index.superior | 167 |
| abstract_inverted_index.testing. | 186 |
| abstract_inverted_index.workload | 100 |
| abstract_inverted_index.1FeFET-1C | 119 |
| abstract_inverted_index.GPU-based | 214 |
| abstract_inverted_index.approach, | 114 |
| abstract_inverted_index.classical | 68 |
| abstract_inverted_index.combining | 121 |
| abstract_inverted_index.component | 22, 29 |
| abstract_inverted_index.efficient | 40 |
| abstract_inverted_index.executing | 194 |
| abstract_inverted_index.expertise | 149 |
| abstract_inverted_index.introduce | 116 |
| abstract_inverted_index.overcomes | 132 |
| abstract_inverted_index.patterns, | 11 |
| abstract_inverted_index.prototype | 183 |
| abstract_inverted_index.providing | 16 |
| abstract_inverted_index.reasoning | 198 |
| abstract_inverted_index.requiring | 50 |
| abstract_inverted_index.structure | 154 |
| abstract_inverted_index.struggles | 46 |
| abstract_inverted_index.validated | 178 |
| abstract_inverted_index.workload. | 110 |
| abstract_inverted_index.'symbolic' | 28, 109 |
| abstract_inverted_index.Comprising | 19 |
| abstract_inverted_index.allocation | 53 |
| abstract_inverted_index.artificial | 1 |
| abstract_inverted_index.bottleneck | 66 |
| abstract_inverted_index.capacitor. | 129 |
| abstract_inverted_index.conducting | 12 |
| abstract_inverted_index.efficiency | 211 |
| abstract_inverted_index.extraction | 25 |
| abstract_inverted_index.innovative | 118 |
| abstract_inverted_index.operations | 96, 106 |
| abstract_inverted_index.processing | 82 |
| abstract_inverted_index.reasoning. | 18 |
| abstract_inverted_index.seamlessly | 89 |
| abstract_inverted_index.transistor | 125 |
| abstract_inverted_index.accommodate | 48 |
| abstract_inverted_index.associative | 104 |
| abstract_inverted_index.benchmarked | 192 |
| abstract_inverted_index.components. | 57 |
| abstract_inverted_index.destructive | 134 |
| abstract_inverted_index.efficiency. | 169 |
| abstract_inverted_index.fabrication | 184 |
| abstract_inverted_index.generalized | 10 |
| abstract_inverted_index.improvement | 203, 208 |
| abstract_inverted_index.inferences, | 14 |
| abstract_inverted_index.limitations | 136 |
| abstract_inverted_index.simulations | 181 |
| abstract_inverted_index.applications | 49 |
| abstract_inverted_index.capitalizing | 145 |
| abstract_inverted_index.demonstrates | 166 |
| abstract_inverted_index.field-effect | 124 |
| abstract_inverted_index.foundational | 81 |
| abstract_inverted_index.intelligence | 2 |
| abstract_inverted_index.successfully | 177 |
| abstract_inverted_index.Additionally, | 43 |
| abstract_inverted_index.accelerators. | 42 |
| abstract_inverted_index.applications, | 141 |
| abstract_inverted_index.charge-domain | 75 |
| abstract_inverted_index.data-transfer | 65 |
| abstract_inverted_index.ferroelectric | 74, 123 |
| abstract_inverted_index.interpretable | 17 |
| abstract_inverted_index.Neuro-symbolic | 0 |
| abstract_inverted_index.challenges-and | 61 |
| abstract_inverted_index.neuro-symbolic | 32, 85, 164, 196 |
| abstract_inverted_index.functionalities | 171 |
| abstract_inverted_index.architectures-we | 71 |
| abstract_inverted_index.decision-making, | 31 |
| abstract_inverted_index.implementations. | 215 |
| abstract_inverted_index.compute-in-memory | 76 |
| abstract_inverted_index.variation-crucial | 162 |
| abstract_inverted_index.multiply-accumulate | 94 |
| cited_by_percentile_year | |
| countries_distinct_count | 0 |
| institutions_distinct_count | 17 |
| citation_normalized_percentile |